Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7177647
Reference Type
Journal Article
Title
Unexpected selectivities in C-H activations of toluene and p-xylene at cationic platinum(II) diimine complexes. New mechanistic insight into product-determining factors
Author(s)
Johansson, L; Ryan, OB; Rømming, C; Tilset, M; ,
Year
2001
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
123
Issue
27
Page Numbers
6579-6590
Language
English
PMID
11439044
DOI
10.1021/ja010277e
Web of Science Id
WOS:000169835300013
Abstract
The C-H activation of toluene and p-xylene at cationic Pt(II) diimine complexes (N-N)Pt(CH(3))(H(2)O)(+)BF(4)(-) (N-N = Ar-N=CMe-CMe=N-Ar; 1(BF(4)(-)), N(f)-N(f), Ar = 3,5-(CF(3))(2)C(6)H(3)); 2(BF(4)(-)), N'-N', Ar = 2,6-(CH(3))(2)C(6)H(3)) has been investigated. The reactions were performed at ambient temperature in 2,2,2-trifluoroethanol (TFE), and after complete conversion of the starting material to mixtures of Pt-aryl/Pt-benzyl complexes and methane, acetonitrile was added to trap the products as more stable acetonitrile adducts. In the reactions with toluene, the relative amounts of products resulting from aromatic C-H activation were found to decrease in the order (N-N)Pt(m-tolyl)(NCMe)(+) > (N-N)Pt(p-tolyl)(NCMe)(+) > (N-N)Pt(o-tolyl)(NCMe)(+) for both 1 and 2. Unlike the reaction at 1, significant amounts of the benzylic activation product (N'-N')Pt(benzyl)(NCMe)(+) were concurrently formed in the C-H activation of toluene at 2. The C-H activation of p-xylene revealed an even more remarkable difference between 1 and 2. Here, the product ratios of (N-N)Pt(xylyl)(NCMe)(+) and (N-N)Pt(p-methylbenzyl)(NCMe)(+) were found to be 90:10 and 7:93 for reactions at 1 and 2, respectively. The elimination of toluene from (N(f)-N(f))Pt(Tol)(2) species (3a-c; a, Tol = o-tolyl; b, Tol = m-tolyl; c, Tol = p-tolyl) after protonolysis with 1 equiv of HBF(4) was investigated. Most notably, protonation in neat TFE followed by addition of acetonitrile gave a 77:23 mixture of (N(f)-N(f))Pt(m-tolyl)(NCMe)(+) (4b) and (N(f)-N(f))Pt(p-tolyl)(NCMe)(+) (4c) from all three isomeric bis(tolyl) complexes 3a-c. The presence of acetonitrile during the protonation reactions resulted in considerably less isomerization. This behavior is explained by an associative mechanism for the product-determining displacement of toluene by the solvent. For the C-H activation reactions, our findings suggest the existence of a dynamic equilibrium between the isomeric intermediates (N-N)Pt(aryl)(CH(4))(+) (aryl = tolyl/benzyl from 1; xylyl/p-methylbenzyl from 2). The observed selectivities might then be explained by steric and electronic effects in the pentacoordinate transition-state structures for the solvent-induced associative elimination of methane from these intermediates.
Tags
•
PFAS Universe
Data Source
Web of Science
Pubmed
2,2,2-Trifluoroethanol
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity