Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7197053
Reference Type
Journal Article
Title
Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus
Author(s)
Arimura, G; Ozawa, R; Kugimiya, S; Takabayashi, J; Bohlmann, J; ,
Year
2004
Is Peer Reviewed?
1
Journal
Plant Physiology
ISSN:
0032-0889
EISSN:
1532-2548
Language
English
PMID
15310830
DOI
10.1104/pp.104.042929
Abstract
Indirect defense of plants against herbivores often involves the induced emission of volatile infochemicals including terpenoids that attract natural enemies of the herbivores. We report the isolation and characterization of a terpene synthase cDNA (LjEbetaOS) from a model legume, Lotus japonicus. Recombinant LjEbetaOS enzyme produced (E)-beta-ocimene (98%) and its Z-isomer (2%). Transcripts of LjEbetaOS were induced in L. japonicus plants infested with two-spotted spider mites (Tetranychus urticae), coinciding with increasing emissions of (E)-beta-ocimene as well as other volatiles, (Z)-3-hexenyl acetate and (E)-4,8-dimethyl-1,3,7-nonatriene, by the infested plants. We suggest that LjEbetaOS is involved in the herbivore-induced indirect defense response of spider mite-infested L. japonicus via de novo formation and emission (E)-beta-ocimene. Mechanical wounding of the leaves or application of alamethicin (ALA), a potent fungal elicitor of plant volatile emission, also induced transiently increased levels of LjEbetaOS transcripts in L. japonicus. However, wounding or ALA did not result in elevated release of (E)-beta-ocimene. Differences in volatile emissions after herbivory, mechanical wounding, or treatment with ALA suggest that neither a single mechanical wounding event nor ALA simulate the effect of herbivore activity and indicate that herbivore-induced emission of (E)-beta-ocimene in L. japonicus involves control mechanisms in addition to up-regulation of LjEbetaOS transcripts.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity