Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7197737
Reference Type
Journal Article
Title
Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation
Author(s)
Mullen, CA; Haugh, MG; Schaffler, MB; Majeska, RJ; Mcnamara, LM; ,
Year
2013
Is Peer Reviewed?
1
Journal
Journal of the Mechanical Behavior of Biomedical Materials
ISSN:
1751-6161
EISSN:
1878-0180
Language
English
PMID
23994943
DOI
10.1016/j.jmbbm.2013.06.013
Abstract
Osteocytes are terminally differentiated bone cells, derived from osteoblasts, which are vital for the regulation of bone formation and resorption. ECM stiffness and cell seeding density have been shown to regulate osteoblast differentiation, but the precise cues that initiate osteoblast-osteocyte differentiation are not yet understood. In this study, we cultured MC3T3-E1 cells on (A) substrates of different chemical compositions and stiffnesses, as well as, (B) substrates of identical chemical composition but different stiffnesses. The effect of cell separation was investigated by seeding cells at different densities on each substrate. Cells were evaluated for morphology, alkaline phosphatase (ALP), matrix mineralisation, osteoblast specific genes (Type 1 collagen, Osteoblast specific factor (OSF-2)), and osteocyte specific proteins (dentin matrix protein 1 (DMP-1), sclerostin (Sost)). We found that osteocyte differentiation (confirmed by dendritic morphology, mineralisation, reduced ALP, Col type 1 and OSF-2 and increased DMP-1 and Sost expression) was significantly increased on soft collagen based substrates, at low seeding densities compared to cells on stiffer substrates or those plated at high seeding density. We propose that the physical nature of the ECM and the necessity for cells to establish a communication network contribute substantially to a concerted shift toward an osteocyte-like phenotype by osteoblasts in vitro.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity