Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7202299
Reference Type
Journal Article
Title
Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 based on redox hydrogel
Author(s)
Tang, Z; Fu, Y; Ma, Z; ,
Year
2017
Is Peer Reviewed?
Yes
Journal
Biosensors and Bioelectronics
ISSN:
0956-5663
EISSN:
1873-4235
Language
English
PMID
28033559
DOI
10.1016/j.bios.2016.12.049
Abstract
In this work, multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 (CA242) were developed using redox sodium alginate-Pb2+-graphene oxide (SA-Pb2+-GO) hydrogel. The SA-Pb2+-GO hydrogel was synthesised by simply mixing SA, GO, and Pb2+ and then implemented as a novel redox species with a strong current signal at -0.46V (vs. Ag/AgCl). After the three-dimensional and porous SA-Pb2+-GO hydrogel was in situ generated on a glassy carbon electrode (GCE), chitosan was adsorbed on the obtained electrode to further enrich Pb2+. When chitosan-Pb2+/SA-Pb2+-GO/GCE was incubated with anti-CA242 using glutaraldehyde and blocked by bovine serum albumin, the immunoassay platform for CA242 was obtained. Owing to the addition of GO, the obtained conductive SA-GO/GCE was beneficial for signal amplification. After incubating SA-GO/GCE with excessive amounts of Pb2+, the resistance of SA-Pb2+-GO/GCE further decreased and a strong redox signal was obtained. The chitosan fixed by electrostatic adsorption resulted in further adsorption of Pb2+, behaving as further amplifying the signal and improving conductivity. In this case, multiple signal amplification strategies were involved in the proposed immunosensor for the ultrasensitive detection of CA242. Under the optimal conditions, the proposed immunosensor exhibited a wide linear range from 0.005UmL-1 to 500UmL-1 with an ultralow detection limit of 0.067mUmL-1. In comparison to previous works, the sensitivity of this method was 32.98μA (log10CCA242)-1, which was a five-fold increase from the previous works.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity