Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7207694
Reference Type
Journal Article
Title
Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants
Author(s)
Li, Y; Liu, X; Tan, L; Cui, Z; Yang, X; Yeung, KWK; Pan, H; Wu, S; ,
Year
2017
Is Peer Reviewed?
1
Journal
Materials Science and Engineering C: Materials for Biological Applications
ISSN:
0928-4931
EISSN:
1873-0191
Language
English
PMID
28482556
DOI
10.1016/j.msec.2017.02.160
Abstract
The traditional antibiotic treatment for bacterial infections often induces antibiotic resistance in bacteria. In this work, we developed hybrid nanoparticles (NPs) with a self-antibacterial ability on Ti implants using monodispersed polystyrene-acrylic acid (PSA) nanoparticles as colloidal templates followed by the electrostatic adsorption of zinc oxide (ZnO) and the subsequent deposition of silica (SiO2) membrane on the outside. These synthesized PSA-ZnO-SiO2 NPs were pretreated by 5,5-dimethylhydantoin (DMH) before chlorination in a diluted NaClO solution. These nanoparticles (PSA-ZnO-SiO2-DMH) were subsequently labeled by N-halamines and then immobilized on the surface of titanium plates through hydrogen bonding. Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) were utilized to characterize the modified surface. Antibacterial tests disclosed that the PSA-ZnO-SiO2-DMH-Cl NPs modified surface exhibited excellent antibacterial activity against both Pseudomonas aeruginosa (P.au), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro cell culture results revealed that PSA-ZnO-SiO2-DMH-Cl had no obvious cytotoxicity for an MC3T3-E1 preosteoblast. This novel surface system provides a promising self-antibacterial bioplatform for metallic implants without using antibiotics.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity