Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7246685
Reference Type
Journal Article
Title
Structure-Function Studies of Polymyxin B Lipononapeptides
Author(s)
Gallardo-Godoy, A; Hansford, KA; Muldoon, C; Becker, B; Elliott, AG; Huang, JX; Pelingon, R; Butler, MS; Blaskovich, MAT; Cooper, MA; ,
Year
2019
Is Peer Reviewed?
1
Journal
Molecules
ISSN:
1420-3049
Publisher
MDPI
Location
BASEL
Language
English
PMID
30717415
DOI
10.3390/molecules24030553
Web of Science Id
WOS:000458934000177
Abstract
The emerging threat of infections caused by highly drug-resistant bacteria has prompted a resurgence in the use of the lipodecapeptide antibiotics polymyxin B and colistin as last resort therapies. Given the emergence of resistance to these drugs, there has also been a renewed interest in the development of next generation polymyxins with improved therapeutic indices and spectra of action. We report structure-activity studies of 36 polymyxin lipononapeptides structurally characterised by an exocyclic FA-Thr²-Dab³ lipodipeptide motif instead of the native FA-Dab¹-Thr²-Dab³ tripeptide motif found in polymyxin B, removing one of the positively charged residues believed to contribute to nephrotoxicity. The compounds were prepared by solid phase synthesis using an on-resin cyclisation approach, varying the fatty acid and the residues at position 2 (P2), P3 and P4, then assessing antimicrobial potency against a panel of Gram-negative bacteria, including polymyxin-resistant strains. Pairwise comparison of N-acyl nonapeptide and decapeptide analogues possessing different fatty acids demonstrated that antimicrobial potency is strongly influenced by the N-terminal L-Dab-1 residue, contingent upon the fatty acid. This study highlights that antimicrobial potency may be retained upon truncation of the N-terminal L-Dab-1 residue of the native exocyclic lipotripeptide motif found in polymyxin B. The strategy may aid in the design of next generation polymyxins.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity