Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7248325
Reference Type
Journal Article
Title
Variations in the neurobiology of reading in children and adolescents born full term and preterm
Author(s)
Travis, KE; Ben-Shachar, M; Myall, NJ; Feldman, HM; ,
Year
2016
Publisher
ELSEVIER SCI LTD
Location
OXFORD
Page Numbers
555-565
Language
English
PMID
27158588
DOI
10.1016/j.nicl.2016.04.003
Web of Science Id
WOS:000379504500062
Abstract
Diffusion properties of white matter tracts have been associated with individual differences in reading. Individuals born preterm are at risk of injury to white matter. In this study we compared the associations between diffusion properties of white matter and reading skills in children and adolescents born full term and preterm. 45 participants, aged 9-17 years, included 26 preterms (born < 36 weeks' gestation) and 19 full-terms. Tract fractional anisotropy (FA) profiles were generated for five bilateral white matter tracts previously associated with reading: anterior superior longitudinal fasciculus (aSLF), arcuate fasciculus (Arc), corticospinal tract (CST), uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF). Mean scores on reading for the two groups were in the normal range and were not statistically different. In both groups, FA was associated with measures of single word reading and comprehension in the aSLF, AF, CST, and UF. However, correlations were negative in the full term group and positive in the preterm group. These results demonstrate variations in the neurobiology of reading in children born full term and preterm despite comparable reading skills. Findings suggest that efficient information exchange required for strong reading abilities may be accomplished via a different balance of neurobiological mechanisms in different groups of readers.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity