Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7259277
Reference Type
Journal Article
Title
The Edge-Driven Dual-Bootstrap Iterative Closest Point algorithm for multimodal retinal image registration
Author(s)
Tsai, CL; Li, CYi; Yang, G; ,
Year
2008
Publisher
SPIE-INT SOC OPTICAL ENGINEERING
Location
BELLINGHAM
DOI
10.1117/12.770840
Web of Science Id
WOS:000256380300107
Abstract
Red-free (RF) fundus retinal images and fluorescein angiogram (FA) sequence are often captured from an eye for diagnosis and treatment of abnormalities of the retina. With the aid of multimodal image registration, physicians can combine information to make accurate surgical planning and quantitative judgment of the progression of a disease. The goal of our work is to jointly align the RE images with the FA sequence of the same eye in a common reference space. Our work is inspired by Generalized Dual-Bootstrap Iterative Closest Point (GDB-ICP), which is a fully-automatic, feature-based method using structural similarity. GDB-ICP rank-orders Lowe keypoint matches and refines the transformation computed from each keypoint match in succession. Albert GDB-ICP has been shown robust to image pairs with illumination difference, the performance is not satisfactory for multimodal and some FA pairs which exhibit substantial non-linear illumination changes. Our algorithm, named Edge-Driven DBICP, modifies generation of keypoint matches for initialization by extracting the Lowe keypoints from the gradient magnitude image, and enriching the keypoint descriptor with global-shape context using the edge points. Our dataset consists of 61 randomly selected pathological sequences, each on average having two RF and 13 FA images. There are total of 4985 image pairs, out of which 1323 are multimodal pairs. Edge-Driven DBICP successfully registered 93% of all pairs, and 82% multimodal pairs, whereas GDB-ICP registered 80% and 40%, respectively. Regarding registration of the whole image sequence in a common reference space, Edge-Driven DBICP succeeded in 60 sequences, which is 26% improvement over GDB-ICP.
Editor(s)
Giger, ML; Karssemeijer, N;
ISBN
978-0-8194-7099-7
Conference Name
Medical Imaging 2008 Conference
Conference Location
San Diego, CA
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity