Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7274932
Reference Type
Journal Article
Title
Low concentration DNA extraction and recovery using a silica solid phase
Author(s)
Katevatis, C; Fan, A; Klapperich, CM
Year
2017
Is Peer Reviewed?
1
Journal
PLoS ONE
EISSN:
1932-6203
Volume
12
Issue
5
Language
English
DOI
10.1371/journal.pone.0176848
URL
https://search.proquest.com/scholarly-journals/low-concentration-dna-extraction-recovery-using/docview/1895671389/se-2?accountid=171501
Exit
Abstract
DNA extraction from clinical samples is commonly achieved with a silica solid phase extraction column in the presence of a chaotrope. Versions of these protocols have been adapted for point of care (POC) diagnostic devices in miniaturized platforms, but commercial kits require a high amount of input DNA. Thus, when the input clinical sample contains less than 1 μg of total DNA, the target-specific DNA recovery from most of these protocols is low without supplementing the sample with exogenous carrier DNA. In fact, many clinical samples used in the development of POC diagnostics often exhibit target DNA concentrations as low as 3 ng/mL. With the broader goal of improving the yield and efficiency of nucleic acid-based POC devices for dilute samples, we investigated both DNA adsorption and recovery from silica particles by using 1 pg– 1 μg of DNA with a set of adsorption and elution buffers ranging in pH and chaotropic presence. In terms of adsorption, we found that low pH and the presence of chaotropic guanidinium thiocyanate (GuSCN) enhanced DNA-silica adsorption. When eluting with a standard low-salt, high-pH buffer, > 70% of DNA was unrecoverable, except when DNA was initially adsorbed with 5 M GuSCN at pH 5.2. Unrecovered DNA was either not initially adsorbed or irreversibly bound on the silica surface. Recovery was improved when eluting with 95°C formamide and 1 M NaOH, which suggested that DNA-silica-chaotrope interactions are dominated by hydrophobic interactions and hydrogen bonding. While heated formamide and NaOH are non-ideal elution buffers for practical POC devices, the salient results are important for engineering a set of optimized reagents that could maximize nucleic acid recovery from a microfluidic DNA-silica-chaotrope system.
Keywords
Sciences: Comprehensive Works; Adsorption; Elution; Formamides; DNA extraction; Hydrogen bonding; Ethanol; Ethanol precipitation; Solid-phase extraction; Chemical analysis; Physiology; Bacteria; Amino acids; Cloning; Nanoparticles; Cadmium; Contaminants; Biomedical engineering; Computer applications; Automation; Carbohydrates; Biological samples; Virions; Proteins; Handbooks; Hydrogen ions; Studies; Spectroscopy; pH effects; Deoxyribonucleic acid--DNA; Colorectal carcinoma; Hydrogen ion concentration; Engineering; Nucleic acids; Cerebrospinal fluid; Polymerase chain reaction; Nucleotide sequence; Bonding; Denaturation; Solid phases; Hydration; Clogging; Buffers; Reagents; Materials science; Fabrication; Surface chemistry; Silicon dioxide; Solubility; Temperature effects; Ribonucleic acid--RNA; Hydrogen; United States--US; Massachusetts
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity