Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7299341
Reference Type
Journal Article
Subtype
Review
Title
NMR study to identify a ligand-binding pocket in Ras
Author(s)
Maurer, T; Wang, W
Year
2013
Volume
33 Pt A
Page Numbers
15-39
Language
English
PMID
25033799
DOI
10.1016/B978-0-12-416749-0.00002-6
Abstract
Despite decades of intense drug discovery efforts, to date no small molecules have been described that directly bind to Ras protein and effectively antagonize its function. In order to identify and characterize small-molecule binders to KRas, we carried out a fragment-based lead discovery effort. A ligand-detected primary nuclear magnetic resonance (NMR) screen identified 266 fragments from a library of 3285 diverse compounds. Protein-detected NMR using isotopically labeled KRas protein was applied for hit validation and binding site characterization. An area on the KRas surface emerged as a consensus site of fragment binding. X-ray crystallography studies on a subset of the hits elucidated atomic details of the ligand-protein interactions, and revealed that the consensus site comprises a shallow hydrophobic pocket. Comparison among the crystal structures indicated that the ligand-binding pocket is flexible and can be expanded upon ligand binding. The identified ligand-binding pocket is proximal to the protein-protein interface and therefore has the potential to mediate functional effects. Indeed, some ligands inhibited SOS1-dependent nucleotide exchange, although with weak potency. Several Ras ligands have been published in literature, the majority of which were discovered using NMR-based methods. Mapping of the ligand-binding sites revealed five areas on Ras with a high propensity for ligand binding and the potential of modulating Ras activity.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity