Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7330087
Reference Type
Journal Article
Subtype
Review
Title
The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data
Author(s)
Hessling, M; Haag, R; Sieber, N; Vatter, P
Year
2021
Volume
16
Page Numbers
Doc07
Language
English
PMID
33643774
DOI
10.3205/dgkh000378
Abstract
Background: The ongoing coronavirus pandemic requires new disinfection approaches, especially for airborne viruses. The 254 nm emission of low-pressure vacuum lamps is known for its antimicrobial effect, but unfortunately, this radiation is also harmful to human cells. Some researchers published reports that short-wavelength ultraviolet light in the spectral region of 200-230 nm (far-UVC) should inactivate pathogens without harming human cells, which might be very helpful in many applications. Methods: A literature search on the impact of far-UVC radiation on pathogens, cells, skin and eyes was performed and median log-reduction doses for different pathogens and wavelengths were calculated. Observed damage to cells, skin and eyes was collected and presented in standardized form. Results: More than 100 papers on far-UVC disinfection, published within the last 100 years, were found. Far-UVC radiation, especially the 222 nm emission of KrCl excimer lamps, exhibits strong antimicrobial properties. The average necessary log-reduction doses are 1.3 times higher than with 254 nm irradiation. A dose of 100 mJ/cm2 reduces all pathogens by several orders of magnitude without harming human cells, if optical filters block emissions above 230 nm. Conclusion: The approach is very promising, especially for temporary applications, but the data is still sparse. Investigations with high far-UVC doses over a longer period of time have not yet been carried out, and there is no positive study on the impact of this radiation on human eyes. Additionally, far-UVC sources are unavailable in larger quantities. Therefore, this is not a short-term solution for the current pandemic, but may be suitable for future technological approaches for decontamination in rooms in the presence of people or for antisepsis.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity