Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7353502
Reference Type
Journal Article
Title
Transcriptional activity of Drosophila melanogaster ecdysone receptor isoforms and ultraspiracle in Saccharomyces cerevisiae
Author(s)
Dela Cruz, FE; Kirsch, DR; Heinrich, JN
Year
2000
Is Peer Reviewed?
Yes
Journal
Journal of Molecular Endocrinology
ISSN:
0952-5041
EISSN:
1479-6813
Volume
24
Issue
2
Page Numbers
183-191
Language
English
PMID
10750019
DOI
10.1677/jme.0.0240183
Web of Science Id
WOS:000086382600003
Abstract
The Drosophila melanogaster ecdysone receptor (EcR) is produced in three isoforms, which mediate developmental processes such as metamorphosis. These isoforms were expressed in Saccharomyces cerevisiae to elucidate aspects of receptor transcription activity in a highly defined genetic model system. All three EcR isoforms showed ligand-independent transcriptional activation of an ecdysone reporter gene and the amount of activation correlated with the size of the N-terminal A/B (transactivation) domain present in the isoform: EcR-B1>EcR-A>EcR-B2. Upon co-expression with ultraspiracle (Usp), transcriptional activation was further increased with EcR-B1 or EcR-A, but was unchanged with EcR-B2 or a truncated EcR lacking the A/B N-terminal domain (EcRDeltaA/B). Thus, the enhanced activity from Usp may depend on the presence of an N-terminal domain of EcR. Co-expression with Usp of several chimeric receptors of the EcR and the mouse androgen receptor (mAR) identified one chimera, composed of the mAR N-terminus and the remainder from EcR (mAR¿EcR-CDEF) that was transcriptionally silent and inducible by Usp. In contrast, the vertebrate homologue, human retinoic acid receptor (RXRalpha), showed ligand-independent transcription when co-expressed with EcRDeltaA/B but not mAR¿ EcR-CDEF. Therefore, RXRalpha does not require its partner to possess an N-terminal domain, yet is intolerant of a heterologous N-terminus. Similarly, the human vitamin D receptor, which has a short N-terminal region, showed greater ligand-independent transcription in the presence of RXRalpha than in the presence of Usp. These results reveal a mechanistic basis for the differential activities among the EcR isoforms, and between Usp and RXRalpha. Furthermore, they provided the foundation for a genetic screen to identify potential insecticides as well as accessory proteins for Usp and EcR.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity