Health & Environmental Research Online (HERO)


Print Feedback Export to File
7376856 
Journal Article 
The ketogenic diet corrects metabolic hypogonadism and preserves pancreatic ß-cell function in overweight/obese men: a single-arm uncontrolled study 
La Vignera, S; Cannarella, R; Galvano, F; Grillo, A; Aversa, A; Cimino, L; Magagnini, CM; Mongioì, LM; Condorelli, RA; Calogero, AE 
2020 
Yes 
Endocrine
ISSN: 1355-008X
EISSN: 1559-0100 
English 
BACKGROUND: Overweight and obesity are increasingly spread in our society. Low testosterone levels are often present in these patients, the so-called metabolic hypogonadism, that further alters the metabolic balance in a sort of vicious cycle. Very low-calorie ketogenic diet (VLCKD) has been reported to efficiently reduce body weight, glycaemia, and the serum levels of insulin, glycated hemoglobin, but its effects on β-cell function and total testosterone (TT) levels are less clear.

AIM: To evaluate the effects of VLCKD on markers suggested to be predictive of β-cell dysfunction development, such as proinsulin or proinsulin/insulin ratio, and on TT values in a cohort of overweight or obese nondiabetic male patients with metabolic hypogonadism.

METHODS: Patients with overweight or obesity and metabolic hypogonadism underwent to VLCKD for 12 weeks. Anthropometric parameters, blood testing for the measurement of glycaemia, insulin, C-peptide, proinsulin, TT, calculation of body-mass index (BMI), and HOMA index were performed before VLCKD and after 12 weeks.

RESULTS: Twenty patients (mean age 49.3 ± 5.2 years) were enrolled. At enrollement all patients presented increased insulin, HOMA index, C-peptide, and proinsulin levels, whereas the proinsulin/insulin ratio was within the normal values. After VLCKD treatment, body weight and BMI significantly decreased, and 14.9 ± 3.9% loss of the initial body weight was achieved. Glycaemia, insulin, HOMA index, C-peptide, and proinsulin significantly decreased compared to pre-VLCKD levels. Serum glycaemia, insulin, C-peptide, and proinsulin levels returned within the normal range in all patients. No difference in the proinsulin/insulin ratio was observed after VLCKD treatment. A mean increase of 218.1 ± 53.9% in serum TT levels was achieved and none of the patients showed TT values falling in the hypogonadal range at the end of the VLCKD treatment.

CONCLUSIONS: This is the first study that evaluated the effects of VLCKD on proinsulin, proinsulin/insulin ratio, and TT levels. VLCKD could be safely used to improve β-cell secretory function and insulin-sensitivity, and to rescue overweight and obese patients from β-cell failure and metabolic hypogonadism.