Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7394212
Reference Type
Journal Article
Title
Update on the aldehyde dehydrogenase gene (ALDH) superfamily
Author(s)
Jackson, B; Brocker, C; Thompson, DC; Black, W; Vasiliou, K; Nebert, DW; Vasiliou, V
Year
2011
Is Peer Reviewed?
Yes
Journal
Human Genomics (Online)
ISSN:
1479-7364
Volume
5
Issue
4
Page Numbers
283-303
Language
English
PMID
21712190
DOI
10.1186/1479-7364-5-4-283
Abstract
Members of the aldehyde dehydrogenase gene (ALDH) superfamily play an important role in the enzymic detoxification of endogenous and exogenous aldehydes and in the formation of molecules that are important in cellular processes, like retinoic acid, betaine and gamma-aminobutyric acid. ALDHs exhibit additional, non-enzymic functions, including the capacity to bind to some hormones and other small molecules and to diminish the effects of ultraviolet irradiation in the cornea. Mutations in ALDH genes leading to defective aldehyde metabolism are the molecular basis of several diseases, including gamma-hydroxybutyric aciduria, pyridoxine-dependent seizures, Sjögren-Larsson syndrome and type II hyperprolinaemia. Interestingly, several ALDH enzymes appear to be markers for normal and cancer stem cells. The superfamily is evolutionarily ancient and is represented within Archaea, Eubacteria and Eukarya taxa. Recent improvements in DNA and protein sequencing have led to the identification of many new ALDH family members. To date, the human genome contains 19 known ALDH genes, as well as many pseudogenes. Whole-genome sequencing allows for comparison of the entire complement of ALDH family members among organisms. This paper provides an update of ALDH genes in several recently sequenced vertebrates and aims to clarify the associated records found in the National Center for Biotechnology Information (NCBI) gene database. It also highlights where and when likely gene-duplication and gene-loss events have occurred. This information should be useful to future studies that might wish to compare the role of ALDH members among species and how the gene superfamily as a whole has changed throughout evolution.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity