Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7424823
Reference Type
Journal Article
Title
Cyclopropene derivatives of aminosugars for metabolic glycoengineering
Author(s)
Hassenrück, J; Wittmann, V; ,
Year
2019
Is Peer Reviewed?
Yes
Journal
Beilstein Journal of Organic Chemistry
ISSN:
1860-5397
Publisher
BEILSTEIN-INSTITUT
Location
FRANKFURT AM MAIN
Volume
15
Page Numbers
584-601
Language
English
PMID
30931000
DOI
10.3762/bjoc.15.54
Web of Science Id
WOS:000460099100001
URL
https://www.beilstein-journals.org/bjoc/articles/15/54
Exit
Abstract
Cyclopropenes have been proven valuable chemical reporter groups for metabolic glycoengineering (MGE). They readily react with tetrazines in an inverse electron-demand Diels-Alder (DAinv) reaction, a prime example of a bioorthogonal ligation reaction, allowing their visualization in biological systems. Here, we present a comparative study of six cyclopropene-modified hexosamine derivatives and their suitability for MGE. Three mannosamine derivatives in which the cyclopropene moiety is attached to the sugar by either an amide or a carbamate linkage and that differ by the presence or absence of a stabilizing methyl group at the double bond have been examined. We determined their DAinv reaction kinetics and their labeling intensities after metabolic incorporation. To determine the efficiencies by which the derivatives are metabolized to sialic acids, we synthesized and investigated the corresponding cyclopropane derivatives because cyclopropenes are not stable under the analysis conditions. From these experiments, it became obvious that N-(cycloprop-2-en-1-ylcarbonyl)-modified (Cp-modified) mannosamine has the highest metabolic acceptance. However, carbamate-linked N-(2-methylcycloprop-2-en-1-ylmethyloxycarbonyl)-modified (Cyoc-modified) mannosamine despite its lower metabolic acceptance results in the same cell-surface labeling intensity due to its superior reactivity in the DAinv reaction. Based on the high incorporation efficiency of the Cp derivative we synthesized and investigated two new Cp-modified glucosamine and galactosamine derivatives. Both compounds lead to comparable, distinct cell-surface staining after MGE. We further found that the amide-linked Cp-modified glucosamine derivative but not the Cyoc-modified glucosamine is metabolically converted to the corresponding sialic acid.
Keywords
Bioorthogonal chemistry; Carbohydrates; Cyclopropenes; Inverse electron-demand DielsâAlder reaction; Metabolic engineering
Tags
Other
•
Harmful Algal Blooms- Health Effects
April 2021 Literature Search
PubMed
WOS
Scopus
Saxitoxins
PubMed
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity