Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7445471
Reference Type
Journal Article
Title
Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes
Author(s)
Chen, X; Liu, X; Lei, J; Xu, Li; Zhao, Z; Kausar, F; Xie, X; Zhu, X; Zhang, Y; Yuan, WZ
Year
2018
Publisher
Royal Society of Chemistry
Volume
3
Issue
2
Page Numbers
364-375
Language
English
DOI
10.1039/c7me00118e
Web of Science Id
WOS:000430146200007
Abstract
Nonconventional luminogens without remarkable conjugation have attracted significant attention due to their scientific and technical importance. Their emission mechanism, however, is still under debate. Recently, we proposed the clustering-triggered emission (CTE) mechanism, namely the clustering of nonconventional chromophores and subsequent electron cloud overlap (delocalization) together with simultaneous conformation rigidification, to rationalize the emission. To further check it, nonaromatic polyurethanes (PUs) bearing carbamate (NHCOO) groups were designed and synthesized. While being virtually nonemissive in dilute PU/DMF solutions, PUs are found to be highly emissive when concentrated or aggregated as powders and films. Furthermore, room-temperature phosphorescence (RTP) is detected from the solid powders and films. Clustering of NHCOO groups and electronic communications among carbonyl (CO) units, N and O atoms are accountable for the emission. Such stereoelectronic interactions were also corroborated by the liquid IR (LIR) measurement. In addition, the aggregates of PUs are also useful for explosive detection and cell imaging. © 2018 The Royal Society of Chemistry.
Tags
Other
•
Harmful Algal Blooms- Health Effects
April 2021 Literature Search
WOS
Scopus
Saxitoxins
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity