Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7450603
Reference Type
Journal Article
Title
Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl
Author(s)
Ribera, D; Narbonne, JF; Arnaud, C; Saint-Denis, M
Year
2001
Is Peer Reviewed?
1
Journal
Soil Biology and Biochemistry
ISSN:
0038-0717
EISSN:
1879-3428
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Location
OXFORD
Volume
33
Issue
7-8
Page Numbers
1123-1130
Language
English
DOI
10.1016/S0038-0717(01)00035-9
Web of Science Id
WOS:000169257800027
URL
https://linkinghub.elsevier.com/retrieve/pii/S0038071701000359
Exit
Abstract
The aim of this study was to investigate the effects of carbaryl, at different concentrations and exposure times, on the biochemical responses of the earthworm, Eisenia fetida andrei (E. andrei) to: (1) elucidate the mechanisms of action of carbamate compounds; and (2) explore the potential for using these responses as biomarkers to monitor carbamate-contaminated soils or for use in sublethal assays to test chemicals in the laboratory. Thus, earthworms were exposed to increasing concentrations of carbaryl (CA) (12, 25 and 50 mg kg(-1) artificial soil) for different periods of time (2. 7 and 14 days) using the standard soil test method. The activities of the following enzymes were measured: catalase (CAT), acetylcholinesterase (AChE). glutathione reductase (GR), glutathione-S-transferase (GST), methoxyresorufin-O-deethylase (MROD) and NADH (NADH Red) and NADPH (NADPH Red) cytochrome reductases activities. Levels of lipid peroxides (LP), peroxidizable lipids (LPI), total glutathione (total GSH) and the percentage of oxidized glutathione (%GSSG) were also determined. Our results showed that cholinesterases are the main target of carbaryl in E. andrei. Carbaryl also inhibited biotransformation enzyme activities but did not induce oxidative stress. Changes were detected in phase I and acetylcholinesterase activities upon exposure to the lowest dose of carbaryl (12 mg kg(-1)). This demonstrated the sensitivity of these parameters in E. andrei. In addition, discrimination between doses and exposure times was clearer when all the responses were considered rather than a selective choice of biomarkers. This confirms our previous finding that a suite of biochemical responses could be used as a sublethal assay for testing chemicals in the laboratory or for soil contamination surveys. (C) 2001 Elsevier Science Ltd. All rights reserved.
Keywords
earthworm; Eisenia; carbaryl; mechanism of action; biomarkers
Tags
Other
•
Harmful Algal Blooms- Health Effects
April 2021 Literature Search
WOS
Scopus
Saxitoxins
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity