Health & Environmental Research Online (HERO)


Print Feedback Export to File
7455242 
Journal Article 
Suppression of arsenopyrite oxidation by microencapsulation using ferric-catecholate complexes and phosphate 
Park, I; Higuchi, K; Tabelin, CB; Jeon, S; Ito, M; Hiroyoshi, N 
2021 
Yes 
Chemosphere
ISSN: 0045-6535
EISSN: 1879-1298 
269 
129413 
English 
Mineral processing, pyro- and hydrometallurgical processes of auriferous sulfide ores and porphyry copper deposits (PCDs) generate arsenopyrite-rich wastes. These wastes are disposed of into the tailings storage facilities (TSF) in which toxic arsenic (As) is leached out and acid mine drainage (AMD) is generated due to the oxidation of arsenopyrite (FeAsS). To suppress arsenopyrite oxidation, this study investigated the passivation of arsenopyrite by forming ferric phosphate (FePO4) coating on its surface using ferric-catecholate complexes and phosphate simultaneously. Ferric iron (Fe3+) and catechol form three types of complexes (mono-, bis-, and triscatecholate complexes) depending on the pH, but mono-catecholate complex (i.e.,[Fe(cat)]+) became unstable in the presence of phosphate because the chemical affinity of Fe3+-PO43- is most probably stronger than that of Fe3+-catechol in [Fe(cat)]+. When two or more catechol molecules were coordinated with Fe3+ (i.e., [Fe(cat)2]- and [Fe(cat)3]3-), however, these complexes were stable irrespective of the presence of phosphate. The treatment of arsenopyrite with [Fe(cat)2]- and phosphate could suppress its oxidation due to the formation of FePO4 coating, evidenced by SEM-EDX and XPS analyses. The mechanism of FePO4 coating formation by [Fe(cat)2]- and phosphate was confirmed by linear sweep voltammetry (LSV): (1) [Fe(cat)2]- was oxidatively decomposed and (2) the resultant product (i.e., [Fe(cat)]+) reacts with phosphate, resulting in the formation of FePO4. 
IRIS
• Inorganic Arsenic (7440-38-2) [Final 2025]
     Lit Search Updates Jan 2019 to April 2021 (OPP)
          New to this search
          PubMed
          WOS
     Lit Search Updates Jan 2019 to August 2022
          PubMed
          WOS