Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7455242
Reference Type
Journal Article
Title
Suppression of arsenopyrite oxidation by microencapsulation using ferric-catecholate complexes and phosphate
Author(s)
Park, I; Higuchi, K; Tabelin, CB; Jeon, S; Ito, M; Hiroyoshi, N
Year
2021
Is Peer Reviewed?
Yes
Journal
Chemosphere
ISSN:
0045-6535
EISSN:
1879-1298
Volume
269
Page Numbers
129413
Language
English
PMID
33388569
DOI
10.1016/j.chemosphere.2020.129413
Web of Science Id
WOS:000631725000126
Abstract
Mineral processing, pyro- and hydrometallurgical processes of auriferous sulfide ores and porphyry copper deposits (PCDs) generate arsenopyrite-rich wastes. These wastes are disposed of into the tailings storage facilities (TSF) in which toxic arsenic (As) is leached out and acid mine drainage (AMD) is generated due to the oxidation of arsenopyrite (FeAsS). To suppress arsenopyrite oxidation, this study investigated the passivation of arsenopyrite by forming ferric phosphate (FePO4) coating on its surface using ferric-catecholate complexes and phosphate simultaneously. Ferric iron (Fe3+) and catechol form three types of complexes (mono-, bis-, and triscatecholate complexes) depending on the pH, but mono-catecholate complex (i.e.,[Fe(cat)]+) became unstable in the presence of phosphate because the chemical affinity of Fe3+-PO43- is most probably stronger than that of Fe3+-catechol in [Fe(cat)]+. When two or more catechol molecules were coordinated with Fe3+ (i.e., [Fe(cat)2]- and [Fe(cat)3]3-), however, these complexes were stable irrespective of the presence of phosphate. The treatment of arsenopyrite with [Fe(cat)2]- and phosphate could suppress its oxidation due to the formation of FePO4 coating, evidenced by SEM-EDX and XPS analyses. The mechanism of FePO4 coating formation by [Fe(cat)2]- and phosphate was confirmed by linear sweep voltammetry (LSV): (1) [Fe(cat)2]- was oxidatively decomposed and (2) the resultant product (i.e., [Fe(cat)]+) reacts with phosphate, resulting in the formation of FePO4.
Tags
IRIS
•
Inorganic Arsenic (7440-38-2) [Final 2025]
Lit Search Updates Jan 2019 to April 2021 (OPP)
New to this search
PubMed
WOS
Lit Search Updates Jan 2019 to August 2022
PubMed
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity