Health & Environmental Research Online (HERO)


Print Feedback Export to File
7455545 
Journal Article 
Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction 
Gao, J; Zheng, T; Deng, Y; Jiang, H 
2021 
Science of the Total Environment
ISSN: 0048-9697
EISSN: 1879-1026 
768 
144709 
English 
Understanding the biogeochemical processes controlling arsenic (As) mobilization under bacterial sulfate reduction (BSR) in aquifer sediments is essential for the remediation of high As groundwater. Here, we conducted microcosm experiments with shallow aquifer sediments from the Jianghan Plain (central Yangtze River Basin) under the stimulation of exogenous sulfate. Initially, co-increases of As(III) (from 0.0 to 88.5 μg/L), Fe(II) (from 0.5 to 6.0 mg/L), and S(-II) (from 0.0 to 90.0 μg/L) indicated the concurrent occurrence of sulfate, Fe(III), and arsenate reduction. The corresponding increase of the relative abundance of OTUs classified as sulfate-reducing bacteria, Desulfomicrobium (from 0.5 to 30.6%), and dsrB gene abundance indicated the strong occurrence of BSR during the incubation. The underlying mechanisms of As mobilization could be attributed to the biotic and abiotic reduction of As-bearing iron (hydro)oxides either through the iron-reducing bacteria or the bacterially generated sulfide, which were supported by the variations in solid speciation of Fe, S, and As. As the incubation progressed, we observed a transient attenuation followed by a re-increase of aqueous As, due to the limited abundance of newly-formed Fe-sulfide minerals with a weak ability of As sequestration. Moreover, the formation of thioarsenate (H2AsS4-) during the mobilization of As from the sediments was observed, highlighting that BSR could facilitate As mobilization through multiple pathways. The present results provided new insights for the biogeochemical processes accounting for As mobilization from sediments under BSR conditions. 
IRIS
• Inorganic Arsenic (7440-38-2) [Final 2025]
     Lit Search Updates Jan 2019 to April 2021 (OPP)
          New to this search
          PubMed
          WOS
     Lit Search Updates Jan 2019 to August 2022
          PubMed
          WOS