Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7467048
Reference Type
Journal Article
Title
The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims
Author(s)
Browne, BL; Gardner, JE
Year
2006
Is Peer Reviewed?
Yes
Journal
Earth and Planetary Science Letters
ISSN:
0012-821X
EISSN:
1385-013X
Volume
246
Issue
3-4
Page Numbers
161-176
Language
English
DOI
10.1016/j.epsl.2006.05.006
Web of Science Id
WOS:000239125500002
URL
http:///www.elsevier.com
Exit
Abstract
Although hornblende reaction rims are widely used as a tool for evaluating magma ascent during volcanic eruptions, very few studies constrain the manner in which they form. This study investigates the influence of magma ascent path on the formation of hornblende reaction rims. To do this, we conducted isothermal (840 C) decompression experiments using dacite pumice samples erupted in December 1989 from Redoubt volcano, Alaska. Experiments were first held within the hornblende stability field determined through phase equilibria experiments for 3 to 5 days before being decompressed to different pressures ranging from 100 to 2 MPa for 1 to 30 days before being quenched. Decompression was performed in either multiple, equal steps (constant rate) or in one single step. Results from multi-step experiments show that reaction rims form preferentially at pressures from 10 to 40 MPa, and that this favorable pressure range narrows and decreases with increased decompression duration. Hornblendes in multi-step experiments are tightly enclosed by fine-grained reaction rims composed of plagiodase and orthopyroxene crystals with high aspect ratios ranging from 1 to 12. For single-step experiments, reaction rims also form preferentially within a narrow pressure range (60-70 MPa), where they consist of medium-grained plagioclase, titanomagnetite, and orthopyroxene crystals with aspect ratios ranging from 1 to 6 that broadly surround subrounded hornblendes. Hornblendes from single-step experiments dropped to lower pressures (< 40 MPa), however, are typically euhedral and tightly enclosed by fine-grained reaction rims composed of plagioclase and orthopyroxene with aspect ratios ranging from 1 to 12. Little or no titanomagnetite is observed in these rims. Reaction rim growth was not observed at pressures below 10 MPa, regardless of decompression style or experiment duration, suggesting that hornblende in magma stored at very shallow depth (< 200 m) will not develop reaction rims due to the limited hornblende dissolution combined with extremely high viscosity of the near-solidus interstitial melt. Finally, we describe what is expected from several different magma ascent paths with respect to the texture, mineralogy, and thickness of hornblende reaction rims, as well as changes in hornblende modal abundance. Observations from dome samples emplaced during the 1989-1990 eruption of Redoubt are consistent with the mixing of slowly rising and intermittently stalling batches of magma with lesser amounts of fresh, rapidly ascending magma. This interpretation is also consistent with seismic observations from the eruption. (c) 2006 Elsevier B.V All rights reserved.
Keywords
hornblende reaction rims; magma ascent; decompression textures; Redoubt volcano
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity