Health & Environmental Research Online (HERO)


Print Feedback Export to File
7482642 
Journal Article 
Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy 
Yang, M; Liamtsau, V; Fan, C; Sylvers, KL; Mcgoron, AJ; Liu, G; Fu, F; Cai, Y 
2019 
Yes 
Analytical Chemistry
ISSN: 0003-2700
EISSN: 1520-6882 
91 
13 
8280-8288 
English 
Surface-enhanced Raman spectroscopy (SERS), as a nondestructive and fast detection technique, is a promising alternative approach for arsenic detection, particularly for in situ applications. SERS-based speciation analysis according to the fingerprint SERS signals of different arsenicals has the potential to provide a superior technique in species preservation over the conventional chromatographic separation methods, albeit with some difficulties due to the similarity in SERS patterns. In this study, we explored a novel SERS method for arsenic speciation by using the separation potential of the coffee ring effect on negatively charged silver nanofilms (AgNFs). Four arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV), were measured for fingerprint SERS signals in solution and on the films. Significant enhancement of SERS signals on the dried coffee ring stains by the AgNFs were observed except for AsIII, and more importantly, arsenicals migrated varying distances during coffee ring development, promoting better speciation. Sodium dodecyl sulfate was then introduced into the droplet to reduce the droplet surface tension, facilitating the migration of solution into the peripheral region. Under the combined interactions of arsenicals with the AgNFs, solvent, and surfactant, enhanced separation between arsenicals was observed as a result of the formation of two concentric rings. Combining the SERS fingerprint signals and physical separation of arsenicals on the surface, arsenic speciation was achieved using the AgNFs substrate-based SERS technology, demonstrating the potential of the coffee ring effect for rapid separation and analysis of small molecules by SERS. 
IRIS
• Inorganic Arsenic (7440-38-2) [Final 2025]
     Lit Search Updates Jan 2019 to April 2021 (OPP)
          New to this search
          PubMed
     Lit Search Updates Jan 2019 to August 2022
          PubMed
          WOS