Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7494115
Reference Type
Journal Article
Title
PM2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B
Author(s)
Peng, H; Zhao, XH; Bi, TT; Yuan, XY; Guo, JB; Peng, SQ
Year
2017
Volume
4
Issue
1
Page Numbers
27
Language
English
PMID
29502513
DOI
10.1186/s40779-017-0136-3
Web of Science Id
WOS:000409220100001
Abstract
BACKGROUND:
Particulate matter (PM), which has adverse effects on citizen health, is a major air pollutant in Beijing city. PM2.5 is an indicator of PM in urban areas and can cause serious damage to human health. Many epidemiological studies have shown that nuclear factor-kappa B (NF-κB) is involved in PM2.5-induced cell injury, but the exact mechanisms are not well understood.
METHODS:
The cytotoxic effects of PM2.5 at 25-1600 μg/ml for 24 h were determined by MTT assay in Chinese hamster ovary cells (CHO) cells. Flow cytometry was used to determine the apoptosis rate induced by PM2.5. The destabilized enhanced green fluorescent protein (d2EGFP) green fluorescent protein reporter system was used to determine the NF-κB activity induced by PM2.5. The expression of pro-apoptotic Bcl-2-associated death promoter (BAD) proteins induced by PM2.5 was determined by western blotting to explore the relationship between PM2.5 and the NF-κB signaling pathway and to determine the toxicological mechanisms of PM2.5.
RESULTS:
PM2.5 collected in Beijing urban districts induces cytotoxic effects in CHO cells according to MTT assay with 72.28% cell viability rates even at 200 μg/ml PM2.5 and flow cytometry assays with 26.97% apoptosis rates at 200 μg/ml PM2.5. PM2.5 increases the activation levels of NF-κB, which have maintained for 24 h. 200 μg/ml PM2.5 cause activation of NF-κB after exposure for 4 h, the activation peak appears after 13.5 h with a peak value of 25.41%. The average percentage of NF-κB activation in whole 24 h is up to 12.9% by 200 μg/ml PM2.5. In addition, PM2.5 decreases the expression level of the pro-apoptotic protein BAD in a concentration-dependent manner.
CONCLUSIONS:
PM2.5 induces NF-κB activation, which persists for 24 h. The expression of pro-apoptotic protein BAD decreased with increased concentrations of PM2.5. These findings suggest that PM2.5 plays a major role in apoptosis by activating the NF-κB signaling pathway and reducing BAD protein expression.
Tags
NAAQS
•
LitSearch-NOx (2024)
Forward Citation Search
Epidemiology
Results
Respiratory-ST
PubMed
WoS
•
Litsearch – PM ISA Supplement 2021
Pubmed iCite citation search (April 2021 BR)
PM2.5 Cardiovascular and Mortality Epi Search
Results
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity