Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7530803
Reference Type
Journal Article
Title
PM2.5-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis
Author(s)
Zhang, J; Liang, S; Ning, R; Jiang, J; Zhang, J; Shen, H; Chen, R; Duan, J; Sun, Z
Year
2020
Is Peer Reviewed?
1
Journal
Environment International
ISSN:
0160-4120
EISSN:
1873-6750
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Location
OXFORD
Volume
136
Page Numbers
105444
Language
English
PMID
31935561
DOI
10.1016/j.envint.2019.105444
Web of Science Id
WOS:000512533700033
URL
https://linkinghub.elsevier.com/retrieve/pii/S0160412019336748
Exit
Abstract
Epidemiological studies have confirmed that PM2.5 could contribute to the development of atherosclerosis accompanied with lipids dysregulation. However, the lipids biomarkers involved in this progress remain largely unknown. In this study, a targeted lipidomic approach was used to find out the possible lipid biomarkers involved in the development of atherosclerosis after PM2.5 exposure or during a recovery period. Also, we assessed the pro-atherosclerosis effects of PM2.5 and follow-up influence using pulse wave (PW) Doppler ultrasound, oil red O staining and H&E staining. The vascular stiffness was elevated after 2-month PM2.5 exposure and might persist after 1-month recovery. While the lesions mostly concentrated in the aortic arch was significantly increased in 2-month PM2.5 exposure group and remained an increasing trend after 1-month recovery. The expressions of pro-inflammatory cytokines detected by Mouse Inflammation Array were elevated after ApoE-/- mice treated with PM2.5 for 2-month and restored following 1-month recovery. Yet, IL-10 was significantly decreased during 1-month recovery. Additionally, the targeted lipidomic analysis demonstrated that cholesterol ester (CE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM) were significantly increased while lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), diacylglycerol (DG), triacylglycerol (TG) were reduced after 2-month PM2.5 exposure, indicating that PM2.5 could disrupt glycerophospholipids, glycerolipids and sphingolipids metabolism. And a persistent impact of PM2.5 on glycerophospholipids and glycerolipids metabolism was found after 1-month recovery. Our study demonstrated that PM2.5-induced inflammation response might promote atherosclerotic lesions probably through lipid dysregulation, and the influence probably persisted after 1-month recovery.
Tags
•
Litsearch – PM ISA Supplement 2021
Pubmed iCite citation search (April 2021 BR)
PM2.5 Cardiovascular and Mortality Epi Search
Results
Merged search results (location and date exclusion applied)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity