Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7542712
Reference Type
Journal Article
Title
Micropollutants in drinking water from source to tap - Method development and application of a multiresidue screening method
Author(s)
Tröger, R; Klöckner, P; Ahrens, L; Wiberg, K
Year
2018
Is Peer Reviewed?
1
Journal
Science of the Total Environment
ISSN:
0048-9697
EISSN:
1879-1026
Volume
627
Page Numbers
1404-1432
Language
English
PMID
30857104
DOI
10.1016/j.scitotenv.2018.01.277
Abstract
A multi-residue screening method for simultaneous measurement of a wide range of micropollutants in drinking water (DW) resources was developed. The method was applied in a field study in central Sweden on water from source to tap, including samples of surface water (upstream and downstream of a wastewater treatment plant, WWTP), intake water before and after a DW treatment plant (DWTP, pilot and full-scale), treated DW leaving the plant and tap water at end users. Low detection limits (low ng L-1 levels) were achieved by using large sample volumes (5 L) combined with ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS). In total, 134 different micropollutants were analyzed, including pesticides, pharmaceuticals and personal care products (PPCPs), drug-related compounds, food additives, and perfluoroalkyl substances (PFASs). Of these 134 micropollutants, 41 were detected in at least one sample, with individual concentrations ranging from sub ng L-1 levels to ~80 ng L-1. Two solid phase extraction (SPE) cartridges (Oasis HLB and Bond-Elut ENV) were shown to be complementary in the field study, with three compounds detected exclusively using HLB. The total concentration in treated drinking water (56-57 ng L-1) was at a similar level as upstream from the WWTP (79-90 ng L-1). The composition of micropollutants changed along the water path, to a higher fraction of food additives and PFASs. Median treatment efficiency in the full-scale DWTP was close to 0%, but with high variability for individual compounds. In contrast, median treatment efficiency in the pilot-scale DWTP was ~90% when using nanofiltration followed by a freshly installed granulated active carbon (GAC) filter.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity