Health & Environmental Research Online (HERO)


Print Feedback Export to File
7548022 
Journal Article 
Biosynthesis of S-Adenosylmethionine by Magnetically Immobilized Escherichia coli Cells Highly Expressing a Methionine Adenosyltransferase Variant 
Yin, C; Zheng, T; Chang, X; , 
2017 
Molecules
ISSN: 1420-3049 
MDPI 
BASEL 
1365 
English 
S-Adenosylmethionine (SAM) is a natural metabolite having important uses in the treatment of various diseases. To develop a simple and effective way to produce SAM, immobilized Escherichia coli cells highly expressing an engineered variant of methionine adenosyltransferase (MAT) were employed to synthesize SAM. The recombinant I303V MAT variant was successfully produced at approximately 900 mg/L in a 10-L bioreactor and exhibited significantly less product inhibition and had a four-fold higher specific activity (14.2 U/mg) than the wild-type MAT (3.6 U/mg). To reduce the mass transfer resistance, the free whole-cells were permeabilized and immobilized using gellan gum gel as support in the presence of 100 mg/L Fe₃O₄ nanoparticles, and the highest activity (4152.4 U/L support) was obtained, with 78.2% of the activity recovery. The immobilized cells were more stable than the free cells under non-reactive conditions, with a half-life of 9.1 h at 50 °C. Furthermore, the magnetically immobilized cells were employed to produce SAM at a 40-mM scale. The residual activity of the immobilized cells was 67% of its initial activity after 10 reuses, and the conversion rate of ATP was ≥95% in all 10 batches. These results indicated that magnetically immobilized cells should be a promising biocatalyst for the biosynthesis of SAM.