Health & Environmental Research Online (HERO)


Print Feedback Export to File
7609013 
Journal Article 
Phytoplankton diversity and community responses to physicochemical variables in mangrove zones of Guangzhou Province, China 
Inyang, AI; Wang, YS 
2020 
Yes 
Ecotoxicology
ISSN: 0963-9292
EISSN: 1573-3017 
29 
650-668 
English 
The phytoplankton diversity and community response to physicochemical variables in mangrove zones of Guangdong Province along the South China coast was investigated from October to December, 2017. This study was set to investigate the phytoplankton community structure in the mangrove zone and assess the relationship between the physicochemical variables and phytoplankton species diversity. Physicochemical variables such as water temperature, total dissolve solids (tds), pH, salinity, turbidity, electrical conductivity (EC) and nutrient salts were measured in situ across the 27 stations. A total of 451 species of phytoplankton were identified belonging to 10 groups (Bacillariophta > Cyanophyta > Chlorophyta > Euglenophyta > Dinoflagellate > Eubacteria > Ochrophyta > Crytophyta > Rhodophyta > Charophyta) and quantified to constitute a standing crop of 7.11 × 108 cells dm-3. The principal component analysis (PCA) reveals that reactive nitrate, phosphate, electrical conductive (EC) and turbidity were the best abiotic factors that controlled the phytoplankton community structure in the area. However, Cannon Corresponding Analysis and Pearson correlation have explicitly revealed the impact of reactive nitrate, phosphate, EC and turbidity on the phytoplankton community structure. For instance, the CCA ordination revealed that species richness and evenness were positively influenced by reactive nitrate but negatively affected by EC, turbidity and water temperature. Diatoms were mostly controlled by total dissolved solids (tds) and salinity, whereas Euglena, cyanobacteria and green algae were impacted EC and turbidity, apart from the general contribution of the nutrient salts as delineated by CCA ordination. The Shannon diversity index value exposed different levels of organic pollution across the mangrove zone of which GD37 was the most impacted station. 
IRIS
• Nitrate/Nitrite
     LitSearch Update 2018/1/1 - 2022/8/17
          PubMed
          WoS