Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7638173
Reference Type
Journal Article
Title
Heli(aza)cene: A Helical Molecular Tweezer with Tunable Intra- and Intermolecular Charge Transfer
Author(s)
Kumar, R; Semwal, S; Choudhury, J; Srivastava, A; ,
Year
2017
Is Peer Reviewed?
Yes
Journal
Chemistry: A European Journal
ISSN:
0947-6539
EISSN:
1521-3765
Publisher
WILEY-V C H VERLAG GMBH
Location
WEINHEIM
Page Numbers
15012-15016
Language
English
PMID
28881051
DOI
10.1002/chem.201703781
Web of Science Id
WOS:000413768900006
URL
http://doi.wiley.com/10.1002/chem.201703781
Exit
Abstract
Non-planar fluorophores offer unique avenues of intra- and intermolecular energy transfer not available in their planar counterparts. We have rationally designed a molecular tweezer based on the pyridine-2,6-dicarboxamide framework having two structurally similar arms with extended π-surface. We termed this molecular tweezer as Heli(aza)cene (HAC) due to its spontaneous adoption of helical conformation stabilized by the amide and imine moieties present in it. In the helical conformation, the two arms of HAC are twisted unequally. This asymmetry confers dissimilar electronic character to the two arms and results in intramolecular charge transfer interactions in HAC. Homochiral stacking of the P- and the M- helices in crystal, and profound redshifting of the emission at higher concentrations of HAC was attributed to intermolecular charge-transfer interactions in aggregated/crystal state. Exposure of HAC, in solution as well as in the solid state, to Lewis/Brønsted acids results in rapid and vibrant color changes. This is the first example of a π-layered helical molecule exhibiting tunable intra-/intermolecular charge-transfer characteristics.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity