Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7664392
Reference Type
Journal Article
Title
Interactions of quinones with thioredoxin reductase - A challenge to the antioxidant role of the mammalian selenoprotein
Author(s)
Cenas, N; Nivinskas, H; Anusevicius, Z; Sarlauskas, J; Lederer, F; Arner, ESJ; ,
Year
2004
Is Peer Reviewed?
Yes
Journal
Journal of Biological Chemistry
ISSN:
0021-9258
EISSN:
1083-351X
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Location
ROCKVILLE
Volume
279
Issue
4
Page Numbers
2583-2592
Language
English
PMID
14604985
DOI
10.1074/jbc.M310292200
Web of Science Id
WOS:000188211300032
URL
https://linkinghub.elsevier.com/retrieve/pii/S0021925818526235
Exit
Abstract
Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(cat)/K-m value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH4) and two-electron reduced (EH2) states in quinone reduction. The redox potential of the EH2/EH4 couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K-i = 6.3 +/- 1 muM). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity