Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7670275
Reference Type
Journal Article
Title
The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors
Author(s)
El Yacoubi, M; Ledent, C; Ménard, JF; Parmentier, M; Costentin, J; Vaugeois, JM
Year
2000
Is Peer Reviewed?
Yes
Journal
British Journal of Pharmacology
ISSN:
0007-1188
EISSN:
1476-5381
Volume
129
Issue
7
Page Numbers
1465-1473
Language
English
PMID
10742303
DOI
10.1038/sj.bjp.0703170
Abstract
1. The locomotor stimulatory effects induced by caffeine (1,3, 7-trimethylxanthine) in rodents have been attributed to antagonism of adenosine A(1) and A(2A) receptors. Little is known about its locomotor depressant effects seen when acutely administered at high doses. The roles of adenosine A(1) and A(2A) receptors in these activities were investigated using a Digiscan actimeter in experiments carried out in mice. Besides caffeine, the A(2A) antagonist SCH 58261 (5-amino-7-(beta-phenylethyl)-2-(8-furyl)pyrazolo[4,3-e]-1,2, 4-triazolo[1,5-c]pyrimidine), the A(1) antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), the A(1) agonist CPA (N(6)-cyclopentyladenosine) and A(2A) receptor knockout mice were used. 2. Caffeine had a biphasic effect on locomotion of wild-type mice not habituated to the open field, stimulating locomotion at 6.25 - 25 mg kg(-1) i.p. doses, while depressing it at 100 mg kg(-1). In sharp contrast, caffeine dose-dependently decreased locomotion in A(2A) receptor knockout mice over the whole range of tested doses. 3. The depressant effects induced by high doses of caffeine were lost in control CD1 mice habituated to the open field. 4. The A(1) agonist CPA depressed locomotion at 0.3 - 1 mg kg(-1) i.p. doses. 5. The A(1) antagonist DPCPX decreased locomotion of A(2A) receptor knockouts and CD1 mice at 5 mg kg(-1) i.p. and 25 mg kg(-1) i.p. respectively. 6. DPCPX (0.2 - 1 mg kg(-1) i.p.) left unaltered or even reduced the stimulant effect of SCH 58261 (1 - 3 mg kg(-1) i.p.) on CD1 mice. 7. These results suggest therefore that the stimulant effect of low doses of caffeine is mediated by A(2A) receptor blockade while the depressant effect seen at higher doses under some conditions is explained by A(1) receptor blockade.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity