Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7687800
Reference Type
Journal Article
Title
Underwater Explosion (UWE) Analysis of the ROKS Cheonan Incident
Author(s)
Kim, S; Gitterman, Y; ,
Year
2013
Is Peer Reviewed?
1
Journal
Pure and Applied Geophysics
ISSN:
0033-4553
EISSN:
1420-9136
Publisher
SPRINGER BASEL AG
Location
BASEL
Volume
170
Issue
4
Page Numbers
547-560
Language
English
DOI
10.1007/s00024-012-0554-9
Web of Science Id
WOS:000316267000005
URL
http://link.springer.com/10.1007/s00024-012-0554-9
Exit
Abstract
The underwater explosion (UWE) resulting in the sinking of the South Korean warship, ROKS Cheonan occurred on March 26 2010. Raw data was analyzed from several 3-component stations-Baengyeong-do Korea Meteorological Administration (KMA) station (BAR), Ganghwa KMA station (GAHB), Incheon Incorporated Research Institutions for Seismology (IRIS) station (INCN), the short-period station-Deokjeok-do KMA station (DEI), as well as from the seismo-acoustic array Baengyeong-do Korea Institute of Geoscience and Mineral Resources (KIGAM) station (BRDAR). The ROKS Cheonan incident has been investigated by both the Multinational Civilian-Military Joint Investigation Group (Ministry of National Defense, 2010) and Hong (Bull Seism Soc Am 101:1554-1562, 2011). Their respective methods and conclusions are also presented in this study. One of the main differences between their findings and ours is that we deducted that the fundamental bubble frequency was 1.01 Hz with a subsequent oscillation of 1.72 Hz. Also, in contrast to findings by the MCMJIG and Hong, our analysis shows the first reverberation frequency to be 8.5 Hz and the subsequent one to be a parts per thousand 25 Hz. The TNT-equivalent charge weight (seismic yield) and seismic magnitude were estimated from an observed bubble frequency of 1.01 Hz and the analytical model of a bubble pulse. From the data analyzed, we deducted that the seismic yield would be about 136 kg of TNT, which is equivalent to the individual yield of a large number of land control mines (LCM) which were abandoned in the vicinity of the ROKS Cheonan incident by the Republic of Korea (ROK) Navy in the 1970s (Ministry of National Defense 2010). Also, whereas both the MCMJIG and HONG estimated the local magnitude at 1.5, our findings came to the conclusion of a local magnitude of approximately 2.04 based on the bubble frequency of 1.01 Hz measured on the vertical component of BAR station data considering the empirical relationship between charge weight (TNT yield) and underwater explosion magnitude. Strong high-frequency signals collected at the 3-component BAR station approximately 30 s after P-wave arrivals and infrasound records at BRDAR clearly indicate powerful acoustic phases and N-waves caused by a relatively shallow UWE. T-phases are also observed on seismograms and spectra at 15-17 Hz on the DEI, GAHB, and INCN stations.
Keywords
bubble collapse; Bubble pulse; T-phase; toroidal bubble; whipping
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity