Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7710940
Reference Type
Journal Article
Title
Comparing Reaction Routes for 3(RO···OR') Intermediates Formed in Peroxy Radical Self- and Cross-Reactions
Author(s)
Hasan, G; Salo, VT; Valiev, RR; Kubečka, J; Kurtén, T
Year
2020
Is Peer Reviewed?
1
Journal
Journal of Physical Chemistry A
ISSN:
1089-5639
EISSN:
1520-5215
Volume
124
Issue
40
Page Numbers
8305-8320
Language
English
PMID
32902986
DOI
10.1021/acs.jpca.0c05960
Web of Science Id
WOS:000580563800020
Abstract
Organic peroxy radicals (RO2) are key intermediates in the chemistry of the atmosphere. One of the main sink reactions of RO2 is the recombination reaction RO2 + R'O2, which has three main channels (all with O2 as a coproduct): (1) R-H═O + R'OH, (2) RO + R'O, and (3) ROOR'. The RO + R'O "alkoxy" channel promotes radical and oxidant recycling, while the ROOR' "dimer" channel leads to low-volatility products relevant to aerosol processes. The ROOR' channel has only recently been discovered to play a role in the gas phase. Recent computational studies indicate that all of these channels first go through an intermediate complex 1(RO···3O2···OR'). Here, 3O2 is very weakly bound and will likely evaporate from the system, giving a triplet cluster of two alkoxy radicals: 3(RO···OR'). In this study, we systematically investigate the three reaction channels for an atmospherically representative set of RO + R'O radicals formed in the corresponding RO2 + R'O2 reaction. First, we systematically sample the possible conformations of the RO···OR' clusters on the triplet potential energy surface. Next, we compute energetic parameters and attempt to estimate reaction rate coefficients for the three channels: evaporation/dissociation to RO + R'O, a hydrogen shift leading to the formation of R'-H═O + ROH, and "spin-flip" (intersystem crossing) leading to, or at least allowing, the formation of ROOR' dimers. While large uncertainties in the computed energetics prevent a quantitative comparison of reaction rates, all three channels were found to be very fast (with typical rates greater than 106 s-1). This qualitatively demonstrates that the computationally proposed novel RO2 + R'O2 reaction mechanism is compatible with experimental data showing non-negligible branching ratios for all three channels, at least for sufficiently complex RO2.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity