Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7721335
Reference Type
Journal Article
Title
Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
Author(s)
Cho, C; Hofzumahaus, A; Fuchs, H; Dorn, HP; Glowania, M; Holland, F; Rohrer, F; Vardhan, V; Kiendler-Scharr, A; Wahner, A; Novelli, A
Year
2021
Is Peer Reviewed?
Yes
Journal
Atmospheric Measurement Techniques
ISSN:
1867-1381
EISSN:
1867-8548
Publisher
Copernicus Gesellschaft Mbh
Location
GOTTINGEN
Volume
14
Issue
3
Page Numbers
1851-1877
Language
English
DOI
10.5194/amt-14-1851-2021
Web of Science Id
WOS:000626739200002
URL
https://amt.copernicus.org/articles/14/1851/2021/
Exit
Abstract
Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (O-3) in the troposphere. Laser-induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell (Mao et al., 2012; Novelli et al., 2014a). In this study, we describe the application and characterization of a chemical modulation reactor (CMR) applied to the Forschungszentrum Julich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Julich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed for performing OH measurement comparisons with differential optical absorption spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. Good agreement was obtained in the LIF-DOAS intercomparison within instrumental accuracies (18 % for LIF and 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations under the conditions of the JULIAC campaign (rural environment). Known interferences from O-3+H2O and the nitrate radical (NO3) were quantified with the CMR in synthetic air in the chamber and found to be 3.0x10(5) and 0.6x10(5) cm(-3), respectively, for typical ambient-air conditions (O-3=50 ppbv, H2O = 1 % and NO3=10 pptv). The interferences measured in ambient air during the JULIAC campaign in the summer season showed a median diurnal variation with a median maximum value of 0.9x10(6) cm(-3) during daytime and a median minimum value of 0.4x10(6) cm(-3) at night. The highest interference of 2x10(6) cm(-3) occurred in a heat wave from 22 to 29 August, when the air temperature and ozone increased to 40 degrees C and 100 ppbv, respectively. All observed interferences could be fully explained by the known O-3+H2O interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for an unexplained interference was found during the JULIAC campaign. A chemical model of the CMR was developed and applied to estimate the possible perturbation of the OH transmission and scavenging efficiency by reactive atmospheric trace gases. These can remove OH by gas phase reactions in the CMR or produce OH by non-photolytic reactions, most importantly by the reaction of ambient HO2 with NO. The interfering processes become relevant at high atmospheric OH reactivities. For the conditions of the JULIAC campaign with OH reactivities below 20 s(-1), the influence on the determination of ambient OH concentrations was small (on average: 2 %). However, in environments with high OH reactivities, such as in a rain forest or megacity, the expected perturbation in the currently used chemical modulation reactor could be large (more than a factor of 2). Such perturbations need to be carefully investigated and corrected for the proper evaluation of OH concentrations when applying chemical scavenging. This implies that chemical modulation, which was developed to eliminate interferences in ambient OH measurements, itself can be subject to interferences that depend on ambient atmospheric conditions.
Series
ATMOSPHERIC MEASUREMENT TECHNIQUES
Tags
IRIS
•
Nitrate/Nitrite
Literature Search Update, 1/1/2018 – 8/17/2022
WoS
•
LitSearch-NOx (2024)
TIAB Screening
Atmospheric
Round 1
Exclude
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity