Health & Environmental Research Online (HERO)


Print Feedback Export to File
7727963 
Journal Article 
Preparation of alpha-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance 
Wu Yan; Pang Aimin; Hu Lei; He Gensheng; Zhang Yingying; Zhang Lixiong; Li Minghai; Ma Zhenye 
2020 
Yes 
Huaxue Xuebao / Acta Chemica Sinica
ISSN: 0567-7351 
78 
337-343 
Chinese 
In ammonium perchlorate (AP) based composite propellants, α-Fe2O3 nanoparticles and hydroxyl terminated polybutadiene (HTPB) are commonly used as catalyst and binder respectively. Their properties and dispersion significantly affect the combustion performance of the composite propellants. However, α-Fe2O3 nanoparticles are hard to disperse uniformly in the binder HTPB owing to the high viscosity, which will decrease their catalytic activity. Directly composite processing of α-Fe2O3 nanoparticles with other main components of composite propellants may be an effective strategy to prevent from aggregation without introducing other components to the solid propellant at the same time. In this paper, the α-Fe2O3/(IPDI-HTPB) composite nanoparticles were prepared by choosing curing agent isophorone diisocyanate (IPDI) as grafting bridge. The typical procedure was as follows: (1) The first step was to synthesize IPDI-HTPB. In order to adjudged the reaction terminal point of IPDI and HTPB, the reaction kinetics of HTPB and IPDI were first researched and the proper reaction conditions were chosen as follows: molar ratio of HTPB and IPDI is 1:1, reaction temperature is under 80℃ and reaction time is 2 h. (2) The second step was to synthesize α-Fe2O3/(IPDI-HTPB) composite nanoparticles. Firstly, the stoichiometric α-Fe2O3 nanoparticles were dispersed in toluene under ultrasound for 10 min. Secondly, the mixture were added in the above IPDI-HTPB solution and the reaction kept for 4 h. Thirdly, the α-Fe2O3/(IPDI-HTPB) composite nanoparticles were centrifuged and washed with toluene and ether for several times. Finally, α-Fe2O3/(IPDI-HTPB) composite nanoparticles were dried in the oven at 80℃ for 12 h. (3) The structure of α-Fe2O3/(IPDI-HTPB) composite nanoparticles were characterized by X-ray diffractometer (XRD), transmittance electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR) and thermogravimetric analysis (TGA). It was observed that HTPB could be chemically coated on the surface of the α-Fe2O3 nanoparticles by the grafting activity of IPDI. The depth of the IPDI-HTPB was nearly 5 nm. The α-Fe2O3/(IPDI-HTPB) composite nanoparticles showed hydrophobicity after the composite process. Compare with the pure α-Fe2O3 nanoparticles, α-Fe2O3 nanoparticles in α-Fe2O3/IPDI-HTPB composite nanoparticles showed better catalytic activity on the thermal decomposition of AP. © 2020 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. 
alpha-Fe2O3 nanoparticles; hydroxyl terminated polybutadiene (HTPB); composite nanoparticles; catalytic activity