Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7732859
Reference Type
Journal Article
Title
Regulation of A(1) adenosine receptors by amiodarone and electrical stimulation in rat myocardial cells in vitro
Author(s)
Jacobson, KA; Fukamil, T
Year
1997
Is Peer Reviewed?
Yes
Journal
Biochemical Pharmacology
ISSN:
0006-2952
EISSN:
1873-2968
Volume
54
Issue
5
Page Numbers
583-587
Language
English
DOI
10.1016/S0006-2952(97)00177-9
Web of Science Id
WOS:A1997XW09800007
Abstract
The effects of conditions that either increase or decrease heart rate on the pharmacological properties of adenosine receptors in cultured rat myocytes were examined. Levels of A1 adenosine receptors, following prolonged treatment with electrical stimulation (ES) or the antiarrhythmic drug amiodarone, were determined using radioligand binding with the specific A1 receptor antagonist [3H]1,3-dipropyl-8-cyclopentylxanthine (CPX). The effects of lowering temperature were also explored. Exposure to amiodarone for 4 days reduced the density of A1 receptors by 19% (from 24.7 ± 0.4 to 20.09 ± 0.3 fmol/dish) and inhibited the rate of contraction by 60% (from 188 ± 16 to 76 ± 30 beats/min), without changing the receptor affinity, protein content, creatine kinase (CK) activity or cell number. Electrical stimulation at 25°C elevated the density of A1 adenosine receptors by 185% (from 4.1 ± 0.4 to 11.69 ± 2.1 fmol/dish). Four days of reduced temperature (from 37°C to either 30 or 25°C) lowered the density of A, adenosine receptors by 69 or 86%, respectively (from 24.1 ± 1.2 to 7.4 ± 0.4 or 3.4 ± 0.3 fmol/dish), with no significant change in the receptor affinity, activity of CK, or lactate dehydrogenase (LDH), protein content or cell number. The observed up- and down-regular-ion of A1 adenosine receptors in primary myocyte cultures in response to conditions that exogenously alter the rate of contraction, is indicative of the role of adenosine receptors in adaptation of heart cells to stress.
Keywords
adenosine receptor; heart rate; amiodarone; electrical stimulation; temperature; cardiocytes
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity