Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7751417
Reference Type
Journal Article
Title
Surface ozone in the Doon Valley of the Himalayan foothills during spring
Author(s)
Ojha, N; Girach, I; Sharma, K; Nair, P; Singh, J; Sharma, N; Singh, N; Flemming, J; Inness, A; Subrahmanyam, KV
Year
2019
Is Peer Reviewed?
Yes
Journal
Environmental Science and Pollution Research
ISSN:
0944-1344
EISSN:
1614-7499
Publisher
Springer Nature
Location
HEIDELBERG
Volume
26
Issue
19
Page Numbers
19155-19170
Language
English
PMID
31020519
DOI
10.1007/s11356-019-05085-2
Web of Science Id
WOS:000473041000017
Abstract
Elevated ozone (O3) pollution is observed every spring over the Northern Indian region including the Himalayan foothills, with a maximum typically in the month of May. However, studies investigating influences of photochemistry and dynamics in the valleys of Central Himalaya are limited. Here, in situ surface O3 observations conducted at Dehradun (77.99° E, 30.27° N, 600 m above mean sea level) in the Doon Valley during April-July 2018 are presented. These O3 observations reveal the prevalence of an urban environment over Dehradun with enhanced levels during noontime (66.4 ppbv ± 11.0 ppbv in May) and lower levels during night (26.7 ppbv ± 11.5 ppbv). Morning time O3 enhancement rate at Dehradun (7.5 ppbv h-1) is found to be comparable to that at Bode (7.3 ppbv h-1) in another valley of Himalayan foothills (Kathmandu), indicating stronger anthropogenic emissions in the Doon Valley as well. Daily average O3 at Dehradun varied in the range of 13.7-71.3 ppbv with hourly values reaching up to 103.1 ppbv during the study period. Besides the in situ photochemical O3 production, the entrainment of O3-rich air through boundary layer dynamics also contributes in noontime O3 enhancement in the Doon Valley. Monthly average O3 at Dehradun (49.3 ppbv ± 19.9 ppbv) is observed to be significantly higher than that over urban sites in Northern India (35-41 ppbv) and Bode (38.5 ppbv) in the Kathmandu Valley during May. O3 photochemical buildup, estimated to be 30.3 ppbv and 39.7 ppbv during April and May, respectively, is significantly lower in June (21.2 ppbv). Copernicus Atmosphere Monitoring Service (CAMS) model simulations successfully reproduce the observed variability in noontime O3 at Dehradun (r = 0.86); however, absolute O3 levels were typically overestimated. The positive relationship between CAMS O3 and CO (r = 0.65) together with an O3/CO slope of 0.16 is attributed to the influences of biomass burning besides anthropogenic emissions on observed O3 variations in the Doon Valley. O3 observations show an enhancement by 35-56% at Dehradun during a high-fire activity period in May 2018 as compared to a low-fire activity period over the Northern Indian region in agreement with the enhancement found in CAMS O3 fields (10-65%) over the region in the vicinity of Dehradun.
Keywords
Himalayan foothills; Doon Valley; Urban pollution; Biomass burning; Northern India; Photochemistry; Boundary layer dynamics; Entrainment
Series
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity