Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7851118
Reference Type
Journal Article
Title
Selective Precipitation of Metal Oxalates from Lithium Ion Battery Leach Solutions
Author(s)
Gerold, Eva; Luidold, S; Antrekowitsch, H
Year
2020
Is Peer Reviewed?
1
Journal
Metals
ISSN:
2075-4701
Volume
10
Issue
11
DOI
10.3390/met10111435
Web of Science Id
WOS:000593804200001
Abstract
The separation of cobalt and nickel from sulfatic leach liquors of spent lithium-ion batteries is described in this paper. In addition to the base metals (e.g., cobalt and nickel), components such as manganese and lithium are also present in such leach liquors. The co-precipitation of these contaminants can be prevented during leach liquor processing by selective precipitation. For the recovery of a cobalt-nickel mixed material, oxalic acid serves as a suitable reagent. For the optimization of the precipitation retention time and yield, the dependence of the oxalic acid addition must be taken into account. In addition to efficiency, attention must also be given to the purity of the product. After this procedure, further processing of the products by calcination into oxides leads to better marketability. A series of experiments confirms the suitability of oxalic acid for precipitation of cobalt and nickel as a mixed oxalate from sulfatic liquors and also suggests a possible route for further processing of the products with increased marketability. The impurities in the resulting oxides are below 3%, whereby a sufficiently high purity of the mixed oxide can be achieved.
Keywords
precipitation; lithium-ion battery; oxalic acid; mixed oxalate
Tags
IRIS
•
Cobalt
LitSearch Update: January 2019 - December 2021
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity