Health & Environmental Research Online (HERO)


Print Feedback Export to File
7855964 
Journal Article 
Combretum quadrangulare Extract Attenuates Atopic Dermatitis-Like Skin Lesions through Modulation of MAPK Signaling in BALB/c Mice 
Park, JH; Hwang, MH; Cho, YR; Hong, SS; Kang, JS; Kim, WH; Yang, SH; Seo, DW; Oh, JS; Ahn, EK 
2020 
Molecules
ISSN: 1420-3049 
25 
English 
Atopic dermatitis (AD) is a chronic inflammatory disease. Combretum quadrangulare (C. quadrangulare) is used as a traditional medicine to improve various pathologies in Southeast Asia. In this study, we investigated the effects of C. quadrangulare ethanol extract (CQ) on 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD like skin lesions in BALB/c mice. After administration with CQ (100, 200, and 400 mg/kg) for 6 weeks, AD symptoms, protein expression, immunoglobulin E (IgE), thymus and activation-regulated chemokine (TARC), and ceramidase level were measured in skin lesions of DNCB-induced BALB/c mice. CQ group improved the dermatitis score, skin pH, transepidermal water loss (TEWL), and skin hydration. Furthermore, histological analysis revealed that CQ attenuated the increased epidermal thickness and infiltration of mast cells caused by DNCB. CQ also increased the expression of filaggrin, and reduced the expression of ceramidase, serum IgE level, and the number of eosinophils. CQ effectively inhibited cytokines and chemokines such as interleukin (IL)-6, IL-13, TARC, and thymic stromal lymphopoietin (TSLP) at the mRNA levels, as well as the activation of mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the skin lesions. Taken together, these findings demonstrate that CQ may be an effective treatment of AD-like skin lesions by inhibiting the expression of inflammatory mediators via the MAPK signaling pathways. 
Atopic dermatitis; Combretum quadrangulare; Inflammation; Mitogen-activated protein kinase; Skin lesions 
PPRTV
• 1,3-Dinitrobenzene 2021
     Literature Search June 2021
          PubMed
          Scopus (July 2021)
          WOS