Health & Environmental Research Online (HERO)


Print Feedback Export to File
7861178 
Journal Article 
Regeneration from injury and resource allocation in sponges and corals - A review 
Henry, LA; Hart, M 
2005 
Yes 
International Review of Hydrobiology
ISSN: 1434-2944
EISSN: 1522-2632 
90 
125-158 
The ability of bottom-dwelling marine epifauna to regenerate injured or lost body parts is critical to the survival of individuals from disturbances that inflict wounds. Numerous studies on marine sponges (Phlyum Porifera) and corals (of the orders Scleractinia and Alcyonacea) suggest that regeneration is limited by many intrinsic (individual-dependent) and extrinsic (environment-dependent) factors, and that other fife history processes may compete with regeneration for energetic and cellular resources. We review how intrinsic (size, age, morphology, genotype) and extrinsic (wound characteristics, water temperature, food availability, sedimentation, disturbance history, selection) factors limit regeneration in sponges and corals. We then review the evidence for impaired somatic growth and sexual reproduction, and altered outcomes of interactions (anti-predator defenses, competitive abilities, self- and non-self recognition abilities) with other organisms in regenerating sponges and corals. We demonstrate that smaller, older sponges and corals of decreasing morphological complexities tend to regenerate less well than others, and that regeneration can be modulated by genotype. Large wounds with small perimeters inflicted away from areas where resources are located tend to be regenerated less well than others, as are injuries inflicted when food is limited and when the animal has been previously or recently injured. We also demonstrate that regeneration strongly impairs somatic growth, reduces aspects of sexual reproduction, and decreases the ability for sponges and corals to defend themselves against predators, to compete, and to recognize conspecifics. Effects of limited regeneration and impaired life histories may manifest themselves in higher levels of biological assembly e.g., reduced accretion of epifaunal biomass, reduced recruitment and altered biotic associations, and thus affect marine community and ecosystem recovery from disturbances. 
disturbance; wound; repair; life history; trade-off