Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7872775
Reference Type
Journal Article
Title
Breaking internal waves on a Florida (USA) coral reef: a plankton pump at work?
Author(s)
Leichter, JJ; Shellenbarger, G; Genovese, SJ; Wing, SR
Year
1998
Is Peer Reviewed?
1
Journal
Marine Ecology Progress Series
ISSN:
0171-8630
EISSN:
1616-1599
Volume
166
Page Numbers
83-97
DOI
10.3354/meps166083
Web of Science Id
WOS:000074431800008
Abstract
Temperature, salinity, flow speeds, and plankton concentrations can be highly variable on the slope of Conch Reef, Florida Keys (USA), as warm surface water is mixed with cool, subsurface water forced onshore by broken internal waves. In August 1995 the water column seaward of the reef exhibited strong temperature and density stratification with a sharp pycnocline and associated subsurface chlorophyll a maximum layer at 45 to 60 m depth. On the reef slope, near-bottom zooplankton sampling at 22 to 28 m showed high concentrations of calanoid copepods, crab zoea, and fish larvae associated with upslope flow of cool, chlorophyll-rich water. In contrast to these periods of high concentrations, zooplankton concentrations were low during periods of long-shore and offshore flow of warm surface waters. Both the frequency of internal bore arrival and the mean duration of cool water events increase with increasing depth on the reef slope. Delivery of zooplankton to the reef is, therefore, also expected to increase with depth. A short-term settlement experiment showed increased settlement of serpulid worms at 20 and 30 m depth compared with 15 m, and a 15.5 mo transplant experiment showed significantly enhanced growth rates of the suspension-feeding coral Madracis mirabilis (Scleractinia: Pocilloporidae) at 30 m depth relative to growth at 15 or 20 m. Internal tidal bores appear to be a predictable, periodic source of cross-shelf transport to Florida coral reefs and an important influence on the spatial and temporal heterogeneity of suspended food particles and larval delivery to the benthos.
Keywords
internal waves; internal bores; zooplankton; transport
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity