Health & Environmental Research Online (HERO)


Print Feedback Export to File
7972644 
Journal Article 
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado 
Wohl, E; Rathburn, S; Chignell, S; Garrett, K; Laurel, D; Livers, B; Patton, A; Records, R; Richards, M; Schook, DM; Sutfin, NA; Wegener, P 
2017 
Yes 
Geomorphology
ISSN: 0169-555X 
277 
171-181 
English 
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network. 
Connectivity; Sediment; Mountain river; Stream gradient