Health & Environmental Research Online (HERO)


Print Feedback Export to File
8003434 
Journal Article 
Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain 
He, P; Yan, S; Wen, X; Zhang, S; Liu, Z; Liu, X; Xiao, C 
2019 
Yes 
Journal of Cellular Biochemistry
ISSN: 0730-2312
EISSN: 1097-4644 
120 
14756-14770 
English 
Oxidative stress takes part in the development of the neurodegenerative disease. Eriodictyol, a flavonoid, commonly presents in citrus fruits, which was well-known for its various bioactivities. The purpose of this study was to investigate the neuroprotective effects of eriodictyol on lipopolysaccharide (LPS)-induced neuroinflammation, oxidative stress, synaptic dysfunctions, and the potential mechanisms involved. We found that eriodictyol explicitly restored LPS-triggered the decrease of cell viability and the mitochondrial potential as well as inflammation responses via mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) pathways regulated by reactive oxygen species (ROS). Besides, eriodictyol alleviated LPS-induced oxidative stress via NF-E2-Related factor2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway in vivo and in vitro. Furthermore, eriodictyol reduced LPS-elicited synaptic dysfunctions via increasing the expression of silent information regulator 1 (Sirt1). Overall, eriodictyol protects LPS-triggered oxidative stress, neuroinflammation, and synaptic dysfunctions partially through MAPKs, NF-κB mediated by ROS, Sirt1, and Nrf2/Keap1 signal pathways, which further supports that eriodictyol is a potentially nutritional preventive strategy for oxidative stress-related neurodegenerative diseases.