Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8066489
Reference Type
Journal Article
Title
Sequestering of Eu(III) by a GAAA RNA tetraloop
Author(s)
Mundoma, C; Greenbaum, NL
Year
2002
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
124
Issue
14
Page Numbers
3525-3532
Language
English
PMID
11929239
DOI
10.1021/ja012268b
Web of Science Id
WOS:000174844700022
Abstract
The site-specific binding of metal ions maintains an important role in the structure, thermal stability, and function of folded RNA structures. RNA tetraloops of the "GNRA" family (where N = any base and R = any purine), which owe their unusual stability to base stacking and an extensive hydrogen bonding network, have been observed to bind metal ions having different chemical and geometric properties. We have used laser-induced lanthanide luminescence and isothermal titration calorimetry (ITC) to examine the metal-binding properties of an RNA stem loop of the GNRA family. Previous research has shown that a single Eu(III) ion binds the stem loop fragment in a highly dehydrated site with a K(d) of approximately 12 microM. Curve-fitting analysis of the broad luminescence excitation spectrum of Eu(III) upon complexation with the tetraloop fragment indicates the possibility of two microenvironments that do not differ in hydration number. Binding of Eu(III) to the loop was accompanied by positive enthalpic changes, consistent with energetic cost of removal of water molecules and suggesting that the binding is entropically driven. By comparison, binding of Mg(II) or Mn(II) to the RNA loop, or Eu(III) to the DNA analogue of the loop, was associated with exothermic changes, consistent with predominantly outer-sphere coordination. These results suggest specific binding, most probably involving ligands on the 5' side of the loop.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity