Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8082306
Reference Type
Journal Article
Title
AAPM/RSNA physics tutorial for residents: digital mammography: an overview
Author(s)
Mahesh, M
Year
2004
Volume
24
Issue
6
Page Numbers
1747-1760
Language
English
PMID
15537982
DOI
10.1148/rg.246045102
Web of Science Id
WOS:000225085600025
Abstract
Recent advances in digital detector technology have paved the way to full-field digital mammography (FFDM) systems. The performance of these systems has evolved to the point where replacement of screen-film mammography (SFM) systems is becoming realistic. Despite some commonality between the two techniques, there are fundamental differences in how images are recorded, displayed, and stored. These differences necessitate an understanding of the principles of detection and the characteristics of digital images. Several approaches have been taken in the development of FFDM systems: (a) slot scanning with a scintillator and a charge-coupled device (CCD) array, (b) a flat-panel scintillator and an amorphous silicon diode array, (c) a flat-panel amorphous selenium array, (d) a tiled scintillator with fiberoptic tapers and a CCD array, and (e) photostimulable phosphor plates (computed radiography). Although the initial cost of an FFDM system is high compared with that of an SFM system, digital mammography has inherent advantages, such as wide dynamic range, reduction in recall rates, potential for reduction in radiation dose, increased patient throughput, postprocessing capability, and digital acquisition. These advantages and the rapidly occurring technologic developments will help establish FFDM as a mainstay of breast evaluation.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity