Health & Environmental Research Online (HERO)


Print Feedback Export to File
8083598 
Journal Article 
Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars 
Chen, P; Li, Z; Luo, D; Jia, R; Lu, H; Tang, M; Hu, Y; Yue, J; Huang, Z 
2021 
Yes 
Chemosphere
ISSN: 0045-6535
EISSN: 1879-1298 
263 
128211 
English 
Soil cadmium (Cd) contamination has become a massive environmental problem. Kenaf is an industrial fiber crop with high tolerance to heavy metals and could be potentially used for soil phytoremediation. However, the molecular mechanism of Cd in kenaf tolerance remains largely unknown. In the present study, using two contrasting Cd sensitive kenaf (GH and YJ), the key factors accounting for differential Cd tolerance were investigated. GH has a stronger Cd transport and accumulation ability than YJ. In addition, physiological index investigation on malondialdehyde (MDA) contents and antioxidant enzyme (SOD, POD, and CAT) activities showed GH has a stronger detoxification capacity than YJ. Furthermore, the cell ultrastructure of GH is more stable than that of YJ under Cd stress. Transcriptome analysis revealed 2221 (689 up and 1532 down) and 3321 (2451 up and 870 down) genes were differentially expressed in GH and YJ, respectively. More DEGs (differentially expressed genes) were characterized as up-regulated in GH, indicating GH is inclined to activate gene expression to cope with cadmium stress. GO and KEGG analyses indicate that DEGs were assigned and enriched in different pathways. Plenty of critical Cd-induced DEGs such as SOD2, PODs, MT1, DTXs, NRT1, ABCs, CES, AP2/ERF, MYBs, NACs, and WRKYs were identified. The DEGs involved pathways, including antioxidant, heavy metal transport or detoxification, substance transport, plant hormone and calcium signals, ultrastructural component, and a wide range of transcription factors were suggested to play crucial roles in kenaf Cd tolerance, and accounting for the difference in Cd stress sensitivities.