Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8142428
Reference Type
Journal Article
Title
Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide
Author(s)
Choudhary, I; Shukla, R; Sharma, A; Raina, KK
Year
2020
Is Peer Reviewed?
Yes
Journal
Journal of Materials Science: Materials in Electronics
ISSN:
0957-4522
EISSN:
1573-482X
Publisher
SPRINGER
Location
DORDRECHT
Volume
31
Issue
22
Page Numbers
20033-20042
DOI
10.1007/s10854-020-04525-x
Web of Science Id
WOS:000573424200008
URL
http://link.springer.com/10.1007/s10854-020-04525-x
Exit
Abstract
The present study demonstrates a red light-emitting nano-phosphor material tailored by doping europium (Eu+3) ions in zinc oxide (ZnO), prepared using a solution based co-precipitation method. Instead of using acetates or nitrates based precursor for Eu(+3)doping, here we directly used europium oxide (Eu2O3) as a precursor. The precursor showed a limited amount of solubility only up to 3% in an alcoholic solution. No phase change of any kind in x-ray diffraction (XRD) patterns indicates effective Eu(+3)doping in ZnO. Also, the broadening of the XRD peaks confirms the reduction of size to the nanoscale. Further, the optical properties of pure ZnO and Eu+3-doped ZnO are elucidated using UV-Visible and photoluminescence (PL) spectroscopy. A redshift of 10 nm in the absorption edge from pure ZnO to 3% Eu+3-doped ZnO concentration is detected, indicating that Eu(+3)ions occupy impurity trap levels below the conduction band. A regular increase in the excitation wavelength from 190 nm to 270 nm confirms that 226 nm excitation wavelength is the onset point for the emission from Eu(+3)ions. The Eu+3-doped ZnO nanoparticles exhibit two emission peaks at 584 nm and 613 nm corresponding to(5)D(0)->(7)F(1)and(5)D(0)->(7)F(2)transition of Eu(+3)ions at low excitation wavelengths of 254 nm and 270 nm. Out of these two peaks, 613 nm peak was the most intense suggesting that mostly(5)D(0)->(7)F(2)transitions are taking place. The intensity ratio of(5)D(0)-> F-7(2)/D-5(0)->(7)F(1)for both excitation wavelengths of 254 nm and 270 nm is always greater than one confirms the efficient emission of red color from Eu(+3)ions. In addition to that, the samples exhibit a high color purity value of 83.78 %, with CIE coordinates (0.60, 0.40) lying closer to the ideal red color CIE coordinates at an excitation wavelength of 254 nm.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity