Health & Environmental Research Online (HERO)


Print Feedback Export to File
8164994 
Journal Article 
Enhancement of composite propellant ignition characteristics by surface abrasion 
Hewson, J; Le Neal, R 
2013 
12 
335-346 
English 
During curing of composite solid rocket motor propellants, the propellant polymer tends to accumulate as a thin film adjacent to the mandrel used to form the internal bore of the propellant grain. This binder-rich layer coats the ammonium perchlorate crystals on the propellant surface and may inhibit flame propagation during rocket motor ignition. Poor flame propagation during ignition can affect both ignition performance and the reliability characteristics. Abrasion of the solid propellant bore surfaces to remove the binder-rich layer and expose the ammonium perchlorate oxidizer is a common procedure used to enhance rocket motor ignition. Abrasion of the propellant bore was evaluated as a means to enhance the ignition performance and reliability characteristics of Bristol 2.75-in. CRV7 rocket motors. Techniques were developed using wire brushes to scrub the surface of the propellant bore. Automated production processes were developed to provide uniform abrasion of the propellant surface, resulting in consistent enhancement of the rocket motor ignition characteristics. This paper describes the development of the CRV7 propellant bore abrasion process, and describes the results of the testing performed to quantify the effect of propellant abrasion on the rocket motor ignition characteristics. © 2013 by Begell House, Inc. 
Ignition; Propellant