Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8311179
Reference Type
Journal Article
Title
Co-ordinated activation of classical and novel PKC isoforms is required for PMA-induced mTORC1 activation
Author(s)
Liu, M; Clarke, CJ; Salama, MF; Choi, YJ; Obeid, LM; Hannun, YA; ,
Year
2017
Is Peer Reviewed?
1
Journal
PLoS ONE
EISSN:
1932-6203
Publisher
PUBLIC LIBRARY SCIENCE
Location
SAN FRANCISCO
Page Numbers
e0184818
Language
English
PMID
28926616
DOI
10.1371/journal.pone.0184818
Web of Science Id
WOS:000411166600043
URL
https://dx.plos.org/10.1371/journal.pone.0184818
Exit
Abstract
Protein kinase C (PKC) has been shown to activate the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, a central hub in the regulation of cell metabolism, growth and proliferation. However, the mechanisms by which PKCs activate mTORC1 are still ambiguous. Our previous study revealed that activation of classical PKCs (cPKC) results in the perinuclear accumulation of cPKC and phospholipase D2 (PLD2) in recycling endosomes in a PLD2-dependent manner. Here, we report that mTORC1 activation by phorbol 12,13-myristate acetate (PMA) requires both classic, cPKC, and novel PKC (nPKC) isoforms, specifically PKCη, acting through distinct pathways. The translocation of mTOR to perinuclear lysosomes was detected after treatment of PKC activators, which was not colocalized with PKCα- or RAB11-positive endosomes and was not inhibited by PLD inhibitors. We found that PKCη inhibition by siRNA or bisindolylmaleimide I effectively decreased mTOR accumulation in lysosomes and its activity. Also, we identified that PKCη plays a role upstream of the v-ATPase/Ragulator/Rag pathway in response to PMA. These data provides a spatial aspect to the regulation of mTORC1 by sustained activation of PKC, requiring co-ordinated activation of two distinct elements, the perinuclear accumulation of cPKC- and PLD-containing endosomes and the nPKC-dependent translation of of mTOR in the perinuclear lysosomes. The close proximity of these two distinct compartments shown in this study suggests the possibility that transcompartment signaling may be a factor in the regulation of mTORC1 activity and also underscores the importance of PKCη as a potential therapeutic target of mTORC-related disorders.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity