Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8335831
Reference Type
Journal Article
Title
Bisphenol A exposure increases epididymal susceptibility to infection in mice
Author(s)
Park, YJ; Pang, WK; Ryu, DY; Adegoke, EO; Rahman, MS; Pang, MG
Year
2021
Is Peer Reviewed?
Yes
Journal
Ecotoxicology and Environmental Safety
ISSN:
0147-6513
EISSN:
1090-2414
Volume
208
Page Numbers
111476
Language
English
PMID
33091778
DOI
10.1016/j.ecoenv.2020.111476
Web of Science Id
WOS:000604138800001
Abstract
Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis. CD-1 male mice (5 weeks old) were treated daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks by oral gavage. Following BPA exposure, we observed decreased intraepithelial projection of basal cells, indicative of changes to the luminal environment. We also observed decreased projection of macrophages and protrusion of apoptotic cells into the lumen induced by incomplete phagocytosis of apoptotic cells in the caput epididymis. Exposure to BPA also reduced the anti- and pro-inflammatory cytokines IL-10, IL-6, IFN-γ, and IL-7 in the epididymis, while the chemotaxis-associated cytokines CCL12, CCL17, CXCL16, and MCP-1 increased. This study suggests two possible mechanisms for BPA induction of male infertility. First, exposure to BPA may induce an imbalance of immune homeostasis by disrupting the ability of basal cells to perceive environmental changes. Second, exposure to BPA may lead to collapse of macrophage phagocytosis via downregulation of intraepithelial projection and inflammatory-related cytokines. In conclusion, the observed potential pathways can lead to autoimmune disorders such epididymitis and orchitis.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity