Health & Environmental Research Online (HERO)


Print Feedback Export to File
8344545 
Journal Article 
Preparation and UV Photoelectric Properties of Aligned ZnO-TiO2and TiO2-ZnO Core-Shell Structured Heterojunction Nanotubes 
Zhou, M; Wu, B; Zhang, X; Cao, S; Ma, P; Wang, K; Fan, Z; Su, M 
2020 
ACS Applied Materials & Interfaces
ISSN: 1944-8244
EISSN: 1944-8252 
12 
34 
38490-38498 
English 
Large-area horizontal-aligned ZnO nanotubes (ZNTs), TiO2 nanotubes (TNTs), TiO2-ZnO core-shell nanotubes (TZNTs) and ZnO-TiO2 core-shell nanotubes (ZTNTs) were successfully synthesized by electrospinning combined with pulsed-laser deposition. The morphology, structure, and composition of the samples were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. The photoluminescence (PL) spectra of these samples indicate that the addition of a TiO2 layer greatly decreases the recombination of photogenerated carriers in the heterojunction nanotubes. The photodetectors (PDs) were fabricated by assembling horizontally ordered nanotubes on the gold interdigital electrode, and their ultraviolet (UV) detection performances were compared. The test results at room temperature show that the PD with aligned ZTNTs have the best UV response and a short response recovery time. In addition, the performance of ZTNT PDs and TZNT PDs are further improved under heating. The photo/dark current ratio, responsivity (Rλ), detectivity (D*), and external quantum efficiency (EQE) of ZTNTs increased to 388, 450 uA·W-1, 1.1 × 1010 cm·Hz1/2·W-1, and 0.15%, respectively, under the condition of 365 nm UV radiation with a power density of 4.9 mW·cm-2 and a 1 V bias at 90 °C. The UV response mechanism and structural superiority of the horizontally ordered coaxial heteronanotube were also discussed. In addition, this work provides an important method for the design of other ordered nanomaterials and structures, which have a wide range of applications in the fields of sensors, transistors, transparent flexible electrodes, and other multifunctional devices. Copyright © 2020 American Chemical Society. 
coaxial heterojunction; electrospinning; one-dimensional nanostructure; orderly arrangement; photodetector