Health & Environmental Research Online (HERO)


Print Feedback Export to File
8454782 
Journal Article 
Porous Refractory Ceramics as a Protective Material in Explosive Loading of Metal Container 
Kapustin, RD; Nikolaenko, PA 
2018 
906-909 
English 
In this work, we tested experimentally refractory porous aluminosilicate ceramic materials as protective energy-absorbing design elements of naturalistic large-scale layouts of explosion-proof thin-walled metal containers. We showed that lightweight refractory porous aluminosilicate materials can be effectively used for an efficient (two or more times) increase in explosion-proof characteristics of the containers simultaneously with minimization of their mass and dimensions. These materials significantly reduce the impact of a shock wave and other damaging factors of explosives and explosive devices on the metal shell of the containers. We developed full-size models of explosion-proof containers with a diameter of 1.2 m that are capable of withstanding an explosion of explosive charge (TNT) with a weight of not less than 3.5 kg without being beyond the range of elastic deformation of the metal shell. The obtained results allow designing similar explosion-proof containers in a wide mass-scale range with predetermined explosion-proof characteristics without costly research and development. Solid refractory porous materials are promising for the development of nonstationary transported explosion-proof containers for the storage, transportation, and destruction of explosive materials and devices, since their application makes it possible to reduce the material consumption, weight, and dimensions of containers. © 2018, Pleiades Publishing, Ltd. 
energy absorption; explosion-proof containers; porous refractory materials